cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A303346 Expansion of Product_{n>=1} ((1 + 2*x^n)/(1 - 2*x^n))^(1/2).

Original entry on oeis.org

1, 2, 4, 10, 18, 38, 72, 142, 260, 510, 940, 1814, 3362, 6490, 12112, 23466, 44114, 85766, 162516, 317190, 604806, 1184682, 2271248, 4461514, 8591784, 16916490, 32696708, 64496130, 125037142, 247007142, 480077432, 949510526, 1849375796, 3661330398, 7144215452
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + 2*x^k)/(1 - 2*x^k))^(1/2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
    nmax = 30; CoefficientList[Series[Sqrt[-QPochhammer[-2, x] / (3*QPochhammer[2, x])], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+2*x^k)/(1-2*x^k))^(1/2)))

Formula

a(n) ~ 2^n / sqrt(c*Pi*n), where c = A048651 * A083864 = 1/2 * Product_{j>=1} (2^j-1)/(2^j+1) = 0.06056210400129025123042464659093375290492912341... - Vaclav Kotesovec, Apr 22 2018

A303306 Expansion of Product_{n>=1} ((1 - (2*x)^n)/(1 + (2*x)^n))^(1/2).

Original entry on oeis.org

1, -2, -2, -4, 6, 4, 12, 56, 134, -108, 196, 328, -484, -88, -3752, -18576, 16838, -16460, -95340, -24408, -201036, -472584, 565544, 1424144, 1843356, -6632568, 10365224, 2317008, 49620088, 130484688, -4419664, 631241440, 761908550, -29690892, 329427380, -8889717144, 23673793860
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2018

Keywords

Crossrefs

Programs

  • Ruby
    def s(n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0}
      s
    end
    def A303306(n)
      ary = [1]
      a = (0..n).map{|i| 2 ** (i - 1) * (s(2 * i) - s(i))}
      (1..n).each{|i| ary << -(1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}
      ary
    end
    p A303306(100)

Formula

a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} 2^(k-1) * A054785(k) * a(n-k) for n > 0.

A303361 Expansion of Product_{n>=1} ((1 + (4*x)^n)/(1 - (4*x)^n))^(1/4).

Original entry on oeis.org

1, 2, 10, 60, 262, 1372, 7044, 32760, 153670, 789676, 3659820, 17109320, 83073180, 381273240, 1786996424, 8604391920, 38832248902, 179714213580, 845485079580, 3834271942440, 17666638985652, 81920437065288, 370224975781560, 1685489994025360
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Crossrefs

Expansion of Product_{n>=1} ((1 + (2^b*x)^n)/(1 - (2^b)*x^n))^(1/(2^b)): A015128 (b=0), A303307 (b=1), this sequence (b=2).
Cf. A303360.

Programs

  • Maple
    seq(coeff(series(mul(((1+(4*x)^k)/(1-(4*x)^k))^(1/4), k = 1..n), x, n+1), x, n), n = 0..35); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/4), {k, 1, nmax}], {x, 0, nmax}], x] * 4^Range[0, nmax] (* Vaclav Kotesovec, Apr 23 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+(4*x)^k)/(1-(4*x)^k))^(1/4)))

Formula

a(n) ~ 2^(2*n - 5/2) * exp(sqrt(n)*Pi/2) / n^(13/16). - Vaclav Kotesovec, Apr 23 2018

A303381 Expansion of Product_{n>=1} ((1 + (8*x)^n)/(1 - (8*x)^n))^(1/8).

Original entry on oeis.org

1, 2, 18, 204, 1526, 15228, 146676, 1217880, 10322982, 106429420, 886934236, 7632390312, 72137002428, 600860144728, 5351962341672, 51402944345520, 411439139563526, 3624067316629836, 33666668386023244, 279519776297893512, 2480351338204454484
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Comments

In general, if h>=1 and g.f. = Product_{k>=1} ((1 + (h*x)^k)/(1 - (h*x)^k))^(1/h), then a(n) ~ h^n * exp(Pi*sqrt(n/h)) /(2^(3/2 + 3/(2*h)) * h^(1/4 + 1/(4*h)) * n^(3/4 + 1/(4*h))). - Vaclav Kotesovec, Apr 23 2018

Crossrefs

Expansion of Product_{n>=1} ((1 + (2^b*x)^n)/(1 - (2^b)*x^n))^(1/(2^b)): A015128 (b=0), A303307 (b=1), A303361 (b=2), this sequence (b=3).
Cf. A303382.

Programs

  • Maple
    seq(coeff(series(mul(((1+(8*x)^k)/(1-(8*x)^k))^(1/8), k = 1..n), x, n+1), x, n), n = 0..25); # Muniru A Asiru, Apr 23 2018
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/8), {k, 1, nmax}], {x, 0, nmax}], x] * 8^Range[0, nmax] (* Vaclav Kotesovec, Apr 23 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+(8*x)^k)/(1-(8*x)^k))^(1/8)))

Formula

a(n) ~ 2^(3*n - 81/32) * exp(sqrt(n)*Pi/2^(3/2)) / n^(25/32). - Vaclav Kotesovec, Apr 23 2018

A303342 Expansion of Product_{k>=1} ((1 + (9*x)^k) / (1 - (9*x)^k))^(1/3).

Original entry on oeis.org

1, 6, 72, 1008, 10746, 130896, 1569456, 17371584, 192625128, 2260005462, 24725148912, 270748885392, 3027318848208, 32608207056528, 354309508944288, 3902606972751168, 41393526342215994, 443390745816982944, 4783687280410092984, 50532141192366275280
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 22 2018

Keywords

Comments

In general, for h>=1, if g.f. = Product_{k>=1} ((1 + (h^2*x)^k) / (1 - (h^2*x)^k))^(1/h), then a(n) ~ h^(2*n) * exp(Pi*sqrt(n/h)) / (2^(3/2 + 3/(2*h)) * h^(1/4 + 1/(4*h)) * n^(3/4 + 1/(4*h))).

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1+(9*x)^k)/(1-(9*x)^k))^(1/3), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 3^(2*n) * exp(Pi*sqrt(n/3)) / (4 * 3^(1/3) * n^(5/6)).

A303440 Expansion of Product_{k>=1} ((1 + (2^k*x)^k)/(1 - (2^k*x)^k))^(1/2^k).

Original entry on oeis.org

1, 2, 10, 148, 8502, 2114924, 2151771524, 8800410198536, 144132802083312550, 9445021284412120235340, 2475898969479166225559648172, 2596153381122039693822323043973720, 10889040933791649565507987988056678914620
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2018

Keywords

Crossrefs

Programs

  • PARI
    N=20; x='x+O('x^N); Vec(prod(k=1, N, ((1+(2^k*x)^k)/(1-(2^k*x)^k))^(1/2^k)))

Formula

a(n) ~ 2^(n^2 - n + 1). - Vaclav Kotesovec, Apr 25 2018

A370752 a(n) = 3^n * [x^n] Product_{k>=1} ((1 + 3*x^k)/(1 - 3*x^k))^(1/3).

Original entry on oeis.org

1, 6, 36, 360, 1998, 18792, 121176, 1123632, 7537860, 72078174, 510702408, 4896308088, 35923749480, 345406994280, 2600934294816, 24985346997888, 191735328374478, 1838307293836560, 14317601666954364, 136953233511162840, 1079293961918593800, 10299943344889922832
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 29 2024

Keywords

Comments

In general, if d > 1, m >= 1 and g.f. = Product_{k>=1} ((1 + d*x^k)/(1 - d*x^k))^(1/m), then a(n) ~ QPochhammer(-1, 1/d)^(1/m) * d^n / (Gamma(1/m) * QPochhammer(1/d)^(1/m) * n^(1 - 1/m)).

Crossrefs

Cf. A303390 (d=3,m=1), A370751 (d=3,m=2), A370752 (d=3,m=3).
Cf. A261584 (d=2,m=1), A303346 (d=2,m=2), A370750 (d=2,m=3), A370749 (d=2,m=4).
Cf. A015128 (d=1,m=1), A303307 (d=1,m=2), A303342 (d=1,m=3).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k)/(1 - 3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
    nmax = 30; CoefficientList[Series[Product[(1 + 3*(3*x)^k)/(1 - 3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + 3*(3*x)^k)/(1 - 3*(3*x)^k))^(1/3).
a(n) ~ QPochhammer(-1, 1/3)^(1/3) * 9^n / (Gamma(1/3) * QPochhammer(1/3)^(1/3) * n^(2/3)).

A303344 Expansion of Product_{n>=1} ((1 + (n*x)^n)/(1 - (n*x)^n))^(1/n).

Original entry on oeis.org

1, 2, 6, 28, 182, 1640, 19220, 278224, 4809942, 96598622, 2208156512, 56580566908, 1605518324884, 49963000166616, 1691615823420800, 61897541544248720, 2433873670903995990, 102341746590575878628, 4582360425862350559350, 217661837260679635780356
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1 + (k*x)^k)/(1 - (k*x)^k))^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+(k*x)^k)/(1-(k*x)^k))^(1/k)))

Formula

a(n) ~ 2 * n^(n-1). - Vaclav Kotesovec, Apr 22 2018
G.f.: exp(Sum_{k>=1} (sigma_k(2*k) - sigma_k(k))*x^k/(2^(k-1)*k)). - Ilya Gutkovskiy, Apr 14 2019
Showing 1-8 of 8 results.