cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A303307 Expansion of Product_{n>=1} ((1 + (2*x)^n)/(1 - (2*x)^n))^(1/2).

Original entry on oeis.org

1, 2, 6, 20, 54, 156, 444, 1192, 3174, 8620, 22516, 58392, 151996, 387352, 984888, 2507088, 6270854, 15659724, 39067588, 96454072, 237663444, 584266696, 1425921992, 3470869296, 8431325916, 20380759544, 49122457608, 118178637040, 283150466232, 676768288176
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[QPochhammer[-1, 2*x] / (2*QPochhammer[2*x])], {x, 0, 30}], x] (* Vaclav Kotesovec, Apr 21 2018 *)
  • Ruby
    def s(n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0}
      s
    end
    def A303307(n)
      ary = [1]
      a = (0..n).map{|i| 2 ** (i - 1) * (s(2 * i) - s(i))}
      (1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}
      ary
    end
    p A303307(100)

Formula

a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} 2^(k-1) * A054785(k) * a(n-k) for n > 0.
a(n) ~ 2^(n - 21/8) * exp(Pi*sqrt(n/2)) / n^(7/8). - Vaclav Kotesovec, Apr 21 2018

A303345 Expansion of Product_{k>=1} ((1 - 2*x^k)/(1 + 2*x^k))^(1/2).

Original entry on oeis.org

1, -2, 0, -2, 6, -6, 12, -22, 48, -94, 160, -318, 622, -1210, 2268, -4482, 8678, -16998, 32632, -64366, 124674, -245866, 476108, -940866, 1829148, -3617066, 7040112, -13937530, 27186810, -53857062, 105196572, -208546726, 407944704, -809175966, 1584713040
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Crossrefs

Expansion of Product_{k>=1} ((1 - 2^b*x^k)/(1 + 2^b*x^k))^(1/(2^b)): A002448 (b=0), this sequence (b=1), A303387 (b=2), A303396 (b=3).

Programs

  • Maple
    seq(coeff(series(mul(((1-2*x^k)/(1+2*x^k))^(1/2), k = 1..n), x, n+1), x, n), n=0..40); # Muniru A Asiru, Apr 22 2018
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1-2*x^k)/(1+2*x^k))^(1/2)))

Formula

a(n) ~ c * (-2)^n / sqrt(Pi*n), where c = (QPochhammer[-1, -1/2] / QPochhammer[-1/2])^(1/2) = 0.96924509195711964009315.... - Vaclav Kotesovec, Apr 25 2018

A303394 Expansion of Product_{n>=1} ((1 - (4*x)^n)/(1 + (4*x)^n))^(1/4).

Original entry on oeis.org

1, -2, -6, -28, -26, -156, -476, 968, 11526, -16172, 139724, 791928, 1315548, 12772840, 31004424, -105335920, 1058225606, 2239259700, -3700870212, 29301955992, -4944685836, -526686535112, 1134044530040, 4057865621232, -13063873857124, -113573062924024
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2018

Keywords

Crossrefs

Expansion of Product_{n>=1} ((1 + (2^b*x)^n)/(1 - (2^b)*x^n))^(1/(2^b)): A002448 (b=0), A303306 (b=1), this sequence (b=2), A303395 (b=3).
Cf. A303361.

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1-(4*x)^k)/(1+(4*x)^k))^(1/4)))

A303395 Expansion of Product_{n>=1} ((1 - (8*x)^n)/(1 + (8*x)^n))^(1/8).

Original entry on oeis.org

1, -2, -14, -140, -586, -5628, -44492, -187864, -482906, -17262828, -37958116, 65242328, -2453533124, 21817485480, 113877127592, -2570293967536, 28064994368262, 169252831757492, -188223954450804, 12624245609040632, 54083158292451540, -158891267358816264
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2018

Keywords

Crossrefs

Expansion of Product_{n>=1} ((1 + (2^b*x)^n)/(1 - (2^b)*x^n))^(1/(2^b)): A002448 (b=0), A303306 (b=1), A303394 (b=2), this sequence (b=3).
Cf. A303381.

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1-(8*x)^k)/(1+(8*x)^k))^(1/8)))

A303343 Expansion of Product_{n>=1} ((1 - (n*x)^n)/(1 + (n*x)^n))^(1/n).

Original entry on oeis.org

1, -2, -2, -12, -90, -968, -12764, -200464, -3674378, -76958942, -1814783184, -47618072204, -1376556963244, -43481881639608, -1490306874257184, -55091497907730000, -2185104061817592618, -92567886910879671396, -4171638481112174023226
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Crossrefs

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1-(k*x)^k)/(1+(k*x)^k))^(1/k)))

Formula

a(n) ~ -2 * n^(n-1). - Vaclav Kotesovec, Apr 25 2018
G.f.: exp(Sum_{k>=1} (sigma_k(k) - sigma_k(2*k))*x^k/(2^(k-1)*k)). - Ilya Gutkovskiy, Apr 14 2019

A303441 Expansion of Product_{k>=1} ((1 - (2^k*x)^k)/(1 + (2^k*x)^k))^(1/2^k).

Original entry on oeis.org

1, -2, -6, -116, -7914, -2080044, -2143234268, -8791784539464, -144097582730402202, -9444444682320960008908, -2475861188239098437867827380, -2596143477450571483513272599120280, -10889030549158315918778789768740624543108
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2018

Keywords

Crossrefs

Programs

  • PARI
    N=20; x='x+O('x^N); Vec(prod(k=1, N, ((1-(2^k*x)^k)/(1+(2^k*x)^k))^(1/2^k)))

Formula

a(n) ~ -2^(n^2 - n + 1). - Vaclav Kotesovec, Apr 25 2018
Showing 1-6 of 6 results.