cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A303360 Expansion of Product_{n>=1} ((1 + 4*x^n)/(1 - 4*x^n))^(1/4).

Original entry on oeis.org

1, 2, 4, 18, 34, 166, 384, 1902, 4756, 24022, 64284, 321542, 899658, 4455690, 12888944, 63185250, 187513426, 910880550, 2759413788, 13295839638, 40967821494, 195979968882, 612569599440, 2911592648458, 9213101043936, 43538337410474, 139246245625364
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Crossrefs

Expansion of Product_{n>=1} ((1 + 2^b*x^n)/(1 - 2^b*x^n))^(1/(2^b)): A015128 (b=0), A303346 (b=1), this sequence (b=2).

Programs

  • Maple
    seq(coeff(series(mul(((1+4*x^k)/(1-4*x^k))^(1/4), k = 1..n), x, n+1), x, n), n = 0..35); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + 4*x^k)/(1 - 4*x^k))^(1/4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
    nmax = 30; CoefficientList[Series[(-3*QPochhammer[-4, x] / (5*QPochhammer[4, x]))^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 23 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+4*x^k)/(1-4*x^k))^(1/4)))

Formula

a(n) ~ c * 4^n / n^(3/4), where c = (QPochhammer[-1, 1/4] / QPochhammer[1/4])^(1/4) / Gamma(1/4) = 0.3885547372628... - Vaclav Kotesovec, Apr 23 2018

A303381 Expansion of Product_{n>=1} ((1 + (8*x)^n)/(1 - (8*x)^n))^(1/8).

Original entry on oeis.org

1, 2, 18, 204, 1526, 15228, 146676, 1217880, 10322982, 106429420, 886934236, 7632390312, 72137002428, 600860144728, 5351962341672, 51402944345520, 411439139563526, 3624067316629836, 33666668386023244, 279519776297893512, 2480351338204454484
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Comments

In general, if h>=1 and g.f. = Product_{k>=1} ((1 + (h*x)^k)/(1 - (h*x)^k))^(1/h), then a(n) ~ h^n * exp(Pi*sqrt(n/h)) /(2^(3/2 + 3/(2*h)) * h^(1/4 + 1/(4*h)) * n^(3/4 + 1/(4*h))). - Vaclav Kotesovec, Apr 23 2018

Crossrefs

Expansion of Product_{n>=1} ((1 + (2^b*x)^n)/(1 - (2^b)*x^n))^(1/(2^b)): A015128 (b=0), A303307 (b=1), A303361 (b=2), this sequence (b=3).
Cf. A303382.

Programs

  • Maple
    seq(coeff(series(mul(((1+(8*x)^k)/(1-(8*x)^k))^(1/8), k = 1..n), x, n+1), x, n), n = 0..25); # Muniru A Asiru, Apr 23 2018
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/8), {k, 1, nmax}], {x, 0, nmax}], x] * 8^Range[0, nmax] (* Vaclav Kotesovec, Apr 23 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+(8*x)^k)/(1-(8*x)^k))^(1/8)))

Formula

a(n) ~ 2^(3*n - 81/32) * exp(sqrt(n)*Pi/2^(3/2)) / n^(25/32). - Vaclav Kotesovec, Apr 23 2018

A303440 Expansion of Product_{k>=1} ((1 + (2^k*x)^k)/(1 - (2^k*x)^k))^(1/2^k).

Original entry on oeis.org

1, 2, 10, 148, 8502, 2114924, 2151771524, 8800410198536, 144132802083312550, 9445021284412120235340, 2475898969479166225559648172, 2596153381122039693822323043973720, 10889040933791649565507987988056678914620
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2018

Keywords

Crossrefs

Programs

  • PARI
    N=20; x='x+O('x^N); Vec(prod(k=1, N, ((1+(2^k*x)^k)/(1-(2^k*x)^k))^(1/2^k)))

Formula

a(n) ~ 2^(n^2 - n + 1). - Vaclav Kotesovec, Apr 25 2018

A303394 Expansion of Product_{n>=1} ((1 - (4*x)^n)/(1 + (4*x)^n))^(1/4).

Original entry on oeis.org

1, -2, -6, -28, -26, -156, -476, 968, 11526, -16172, 139724, 791928, 1315548, 12772840, 31004424, -105335920, 1058225606, 2239259700, -3700870212, 29301955992, -4944685836, -526686535112, 1134044530040, 4057865621232, -13063873857124, -113573062924024
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2018

Keywords

Crossrefs

Expansion of Product_{n>=1} ((1 + (2^b*x)^n)/(1 - (2^b)*x^n))^(1/(2^b)): A002448 (b=0), A303306 (b=1), this sequence (b=2), A303395 (b=3).
Cf. A303361.

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1-(4*x)^k)/(1+(4*x)^k))^(1/4)))

A303442 Expansion of Product_{k>=1} ((1 + 4^k*x^k)/(1 - 4^k*x^k))^(1/4^k).

Original entry on oeis.org

1, 2, 4, 18, 34, 166, 544, 2222, 5396, 29622, 101276, 411206, 1170986, 5435466, 20007472, 90854146, 253956882, 1160301990, 4412414972, 18080729238, 56012061494, 275783908498, 1010620487696, 4103148863306, 12730394683264, 58227896627114, 223877604671508
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Exp[Sum[((-1)^j - 1) / (j*(1 - 1/(4^(j-1)*x^j))), {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 25 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+4^k*x^k)/(1-4^k*x^k))^(1/4^k)))
Showing 1-5 of 5 results.