A303360
Expansion of Product_{n>=1} ((1 + 4*x^n)/(1 - 4*x^n))^(1/4).
Original entry on oeis.org
1, 2, 4, 18, 34, 166, 384, 1902, 4756, 24022, 64284, 321542, 899658, 4455690, 12888944, 63185250, 187513426, 910880550, 2759413788, 13295839638, 40967821494, 195979968882, 612569599440, 2911592648458, 9213101043936, 43538337410474, 139246245625364
Offset: 0
Expansion of Product_{n>=1} ((1 + 2^b*x^n)/(1 - 2^b*x^n))^(1/(2^b)):
A015128 (b=0),
A303346 (b=1), this sequence (b=2).
-
seq(coeff(series(mul(((1+4*x^k)/(1-4*x^k))^(1/4), k = 1..n), x, n+1), x, n), n = 0..35); # Muniru A Asiru, Apr 22 2018
-
nmax = 30; CoefficientList[Series[Product[((1 + 4*x^k)/(1 - 4*x^k))^(1/4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
nmax = 30; CoefficientList[Series[(-3*QPochhammer[-4, x] / (5*QPochhammer[4, x]))^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 23 2018 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+4*x^k)/(1-4*x^k))^(1/4)))
A303381
Expansion of Product_{n>=1} ((1 + (8*x)^n)/(1 - (8*x)^n))^(1/8).
Original entry on oeis.org
1, 2, 18, 204, 1526, 15228, 146676, 1217880, 10322982, 106429420, 886934236, 7632390312, 72137002428, 600860144728, 5351962341672, 51402944345520, 411439139563526, 3624067316629836, 33666668386023244, 279519776297893512, 2480351338204454484
Offset: 0
Expansion of Product_{n>=1} ((1 + (2^b*x)^n)/(1 - (2^b)*x^n))^(1/(2^b)):
A015128 (b=0),
A303307 (b=1),
A303361 (b=2), this sequence (b=3).
-
seq(coeff(series(mul(((1+(8*x)^k)/(1-(8*x)^k))^(1/8), k = 1..n), x, n+1), x, n), n = 0..25); # Muniru A Asiru, Apr 23 2018
-
nmax = 20; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/8), {k, 1, nmax}], {x, 0, nmax}], x] * 8^Range[0, nmax] (* Vaclav Kotesovec, Apr 23 2018 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+(8*x)^k)/(1-(8*x)^k))^(1/8)))
A303440
Expansion of Product_{k>=1} ((1 + (2^k*x)^k)/(1 - (2^k*x)^k))^(1/2^k).
Original entry on oeis.org
1, 2, 10, 148, 8502, 2114924, 2151771524, 8800410198536, 144132802083312550, 9445021284412120235340, 2475898969479166225559648172, 2596153381122039693822323043973720, 10889040933791649565507987988056678914620
Offset: 0
A303394
Expansion of Product_{n>=1} ((1 - (4*x)^n)/(1 + (4*x)^n))^(1/4).
Original entry on oeis.org
1, -2, -6, -28, -26, -156, -476, 968, 11526, -16172, 139724, 791928, 1315548, 12772840, 31004424, -105335920, 1058225606, 2239259700, -3700870212, 29301955992, -4944685836, -526686535112, 1134044530040, 4057865621232, -13063873857124, -113573062924024
Offset: 0
Expansion of Product_{n>=1} ((1 + (2^b*x)^n)/(1 - (2^b)*x^n))^(1/(2^b)):
A002448 (b=0),
A303306 (b=1), this sequence (b=2),
A303395 (b=3).
A303442
Expansion of Product_{k>=1} ((1 + 4^k*x^k)/(1 - 4^k*x^k))^(1/4^k).
Original entry on oeis.org
1, 2, 4, 18, 34, 166, 544, 2222, 5396, 29622, 101276, 411206, 1170986, 5435466, 20007472, 90854146, 253956882, 1160301990, 4412414972, 18080729238, 56012061494, 275783908498, 1010620487696, 4103148863306, 12730394683264, 58227896627114, 223877604671508
Offset: 0
-
nmax = 30; CoefficientList[Series[Exp[Sum[((-1)^j - 1) / (j*(1 - 1/(4^(j-1)*x^j))), {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 25 2018 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+4^k*x^k)/(1-4^k*x^k))^(1/4^k)))
Showing 1-5 of 5 results.
Comments