A271315 Array T(n,k) read by diagonals: T(n,k) = T(n,k-1) + T(n,k-2) where T(n,0) = F(n+1), T(n,1) = F(n); F(n) = Fibonacci(n) = A000045(n).
1, 0, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 3, 2, 5, 3, 5, 4, 5, 3, 8, 5, 8, 7, 7, 8, 5, 13, 8, 13, 11, 12, 11, 13, 8, 21, 13, 21, 18, 19, 19, 18, 21, 13, 34, 21, 34, 29, 31, 30, 31, 29, 34, 21, 55, 34, 55, 47, 50, 49, 49, 50, 47, 55, 34, 89
Offset: 0
Examples
Array Starts: n/k 0 1 2 3 4 5 6 7 8 9 10 0 1 0 1 1 2 3 5 8 13 21 34 1 1 1 2 3 5 8 13 21 34 55 89 2 2 1 3 4 7 11 18 29 47 76 123 3 3 2 5 7 12 19 31 50 81 131 212 4 5 3 8 11 19 30 49 79 128 207 335 5 8 5 13 18 31 49 80 129 209 338 547 6 13 8 21 29 50 79 129 208 337 545 882 7 21 13 34 47 81 128 209 337 546 883 1429 8 34 21 55 76 131 207 338 545 883 1428 2311 9 55 34 89 123 212 335 547 882 1429 2311 3740 10 89 55 144 199 343 542 885 1427 2312 3739 6051 Row 7 starts {21,13} because A000045(8)=21 and A000045(7)=13. T(9,2)=89 + T(9,3)=123 = T(9,4)=212; alternatively, T(7,4)=81 + T(8,4)=131 = T(9,4)=212.
Crossrefs
Programs
-
PARI
{T(n, k) = fibonacci(n) * fibonacci(k) + fibonacci(n+1) * fibonacci(k-1)}; /* Michael Somos, Apr 03 2016 */
Formula
T(n,k) = T(n,k-1) + T(n,k-2) = T(n-1,k) + T(n-2,k).
T(n,n) = T(n-1,n+1) = A061646(n).
T(n,n+1) = A079472(n+1). Omitting T(n,0), the array is symmetric about this falling diagonal.
Treating rows and columns as individual sequences, let R_n be Row n and C_k be Column k; let R_n(k) and C_k(n) be terms k and n, respectively, in these sequences:
C_0(n) = A000045(n+1).
Comments