cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A271366 Primes of the form 272259344081 + 2*n^2.

Original entry on oeis.org

272259344081, 272259344083, 272259344089, 272259344099, 272259344113, 272259344131, 272259344153, 272259344179, 272259344209, 272259344243, 272259344281, 272259344323, 272259344369, 272259344419, 272259344881, 272259345433, 272259345539, 272259347123, 272259347281, 272259347953
Offset: 1

Views

Author

Waldemar Puszkarz, Apr 05 2016

Keywords

Comments

The first 14 primes correspond to the values of n from 0 to 13. The first term is a member of A271348 and A165234.

Examples

			For n=0, we get 272259344081, which is a prime as determined in A271348.
For n=1, we get 272259344081 + 2*1^2 = 272259344083, which is a prime as determined in A271348.
		

Crossrefs

Cf. A000040 (primes), A271348, A165234 (sequences containing the first term), A050265, A007641, A271818, A271819, A271820 (similar sequences whose first term is in A271348).

Programs

  • Mathematica
    Select[Table[272259344081+2*n^2, {n, 0, 100}], PrimeQ]
  • PARI
    for(n=0, 100, isprime(272259344081+2*n^2) && print1(272259344081+2*n^2, ","))

A271818 Primes of the form 33164857769 + 2*n^2.

Original entry on oeis.org

33164857769, 33164857771, 33164857777, 33164857787, 33164857801, 33164857819, 33164857841, 33164857867, 33164857897, 33164857931, 33164857969, 33164858011, 33164858347, 33164858569, 33164858737, 33164859019, 33164859569, 33164859691, 33164859817, 33164860219, 33164860507, 33164862769, 33164863177, 33164864731, 33164864969, 33164865457, 33164865961, 33164866481, 33164868427, 33164869321
Offset: 1

Views

Author

Waldemar Puszkarz, Apr 14 2016

Keywords

Comments

The first 12 primes correspond to the values of n from 0 to 11. The first term is a member of A271348 and A165234.

Examples

			For n=0, we get 33164857769, which is a prime as determined in A271348.
For n=1, we get 33164857769 + 2*1^2 = 33164857771, which is a prime as determined in A271348.
		

Crossrefs

Cf. A000040 (primes), A271348, A165234 (sequences containing the first term), A050265, A007641, A271366, A271819, A271820 (similar sequences whose first term is in A271348).

Programs

  • Mathematica
    Select[Table[33164857769+2*n^2, {n, 0, 100}], PrimeQ]
  • PARI
    for(n=0, 100, isprime(33164857769+2*n^2) && print1(33164857769+2*n^2, ", "))

A271819 Primes of the form 159587584529 + 2*n^2.

Original entry on oeis.org

159587584529, 159587584531, 159587584537, 159587584547, 159587584561, 159587584579, 159587584601, 159587584627, 159587584657, 159587584691, 159587584729, 159587584771, 159587585107, 159587585329, 159587585681, 159587585881, 159587586097, 159587586451, 159587586707, 159587586979
Offset: 1

Views

Author

Waldemar Puszkarz, Apr 14 2016

Keywords

Comments

The first 12 primes correspond to the values of n from 0 to 11. The first term is a member of A271348.

Examples

			For n=0, we get 159587584529, which is a prime as determined in A271348.
For n=1, we get 159587584529 + 2*1^2 = 159587584531, which is a prime as determined in A271348.
		

Crossrefs

Cf. A000040 (primes), A271348 (contains the first term), A050265, A007641, A271366, A271818, A271820 (similar sequences whose first term is in A271348).

Programs

  • Mathematica
    Select[Table[159587584529+2*n^2, {n, 0, 100}], PrimeQ]
  • PARI
    for(n=0, 100, isprime(159587584529+2*n^2) && print1(159587584529+2*n^2, ", "))

A271820 Primes of the form 236241327599 + 2*n^2.

Original entry on oeis.org

236241327599, 236241327601, 236241327607, 236241327617, 236241327631, 236241327649, 236241327671, 236241327697, 236241327727, 236241327761, 236241327799, 236241327841, 236241328177, 236241328751, 236241330049, 236241331831, 236241332207, 236241332401, 236241333649, 236241334799
Offset: 1

Views

Author

Waldemar Puszkarz, Apr 14 2016

Keywords

Comments

The first 12 primes correspond to the values of n from 0 to 11. The first term is a member of A271348.

Examples

			For n=0, we get 236241327599, which is a prime as determined in A271348.
For n=1, we get 236241327599 + 2*1^2 = 236241327601, which is a prime as determined in A271348.
		

Crossrefs

Cf. A000040 (primes), A271348 (contains the first term), A050265, A007641, A271366, A271818, A271819 (similar sequences whose first term is in A271348).

Programs

  • Mathematica
    Select[Table[236241327599+2*n^2, {n, 0, 100}], PrimeQ]
  • PARI
    for(n=0, 100, isprime(236241327599+2*n^2) && print1(236241327599+2*n^2, ", "))
Showing 1-4 of 4 results.