A271368 Number of ways to write n as the sum of distinct super-primes (A006450).
0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 0, 1, 3, 0, 1, 2, 0, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 0, 3, 2, 0, 3, 2, 2, 2, 2, 2, 3, 1, 2, 3, 0, 2, 3, 1, 4
Offset: 1
Keywords
Examples
There are two ways to write 31 as the sum of distinct super-primes: 31 (a single summand, as 31 is itself a super-prime) and 17 + 11 + 3 (three summands), so a(31) = 2.
Links
- R. E. Dressler and S. T. Parker, Primes with a Prime Subscript, Journal of the ACM, Vol. 22, No. 3 (1975), 380-381.
- Wikipedia, Super-prime
Programs
-
PARI
isokp(pt) = {for (k=1, #pt, if (! isprime(pt[k]) || !isprime(primepi(pt[k])), return (0));); #pt == #Set(pt);} a(n) = {if (n < 3, return (0)); nb = 0; forpart(pt = n, if (isokp(pt), nb++), [3, n]); nb;} \\ Michel Marcus, Apr 06 2016
Formula
G.f.: prod(k>=1, 1 + x^A006450(k) ). [Joerg Arndt, Apr 06 2016]
Extensions
More terms from Michel Marcus, Apr 06 2016
Comments