cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271371 Total number of inversions in all partitions of n into distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 5, 6, 9, 13, 22, 26, 38, 48, 66, 89, 113, 142, 185, 230, 289, 368, 449, 554, 679, 831, 1003, 1224, 1474, 1767, 2117, 2528, 2996, 3568, 4206, 4967, 5855, 6862, 8027, 9391, 10943, 12724, 14785, 17124, 19807, 22898, 26376, 30345, 34893, 40013
Offset: 0

Views

Author

Alois P. Heinz, Apr 05 2016

Keywords

Examples

			a(3) = 1: 21.
a(4) = 1: 31.
a(5) = 2: 32, 41.
a(6) = 5: 42, 51, 321 (three inversions).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
         `if`(n=0, [1, 0], b(n, i-1, t)+`if`(i>n, 0,
          (p-> p+[0, p[1]*t])(b(n-i, i-1, t+1)))))
        end:
    a:= n-> b(n$2, 0)[2]:
    seq(a(n), n=0..60);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n > i*(i+1)/2, 0, If[n == 0, {1, 0}, b[n, i-1, t] + If[i>n, 0, Function[p, p+{0, p[[1]]*t}][b[n-i, i-1, t+1]]]]]; a[n_] := b[n, n, 0][[2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)

Formula

a(n) = Sum_{k>=1} A161680(k) * A008289(n,k).