A271371 Total number of inversions in all partitions of n into distinct parts.
0, 0, 0, 1, 1, 2, 5, 6, 9, 13, 22, 26, 38, 48, 66, 89, 113, 142, 185, 230, 289, 368, 449, 554, 679, 831, 1003, 1224, 1474, 1767, 2117, 2528, 2996, 3568, 4206, 4967, 5855, 6862, 8027, 9391, 10943, 12724, 14785, 17124, 19807, 22898, 26376, 30345, 34893, 40013
Offset: 0
Keywords
Examples
a(3) = 1: 21. a(4) = 1: 31. a(5) = 2: 32, 41. a(6) = 5: 42, 51, 321 (three inversions).
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..8950 (terms 0..5000 from Alois P. Heinz)
- Wikipedia, Inversion (discrete mathematics)
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, [1, 0], b(n, i-1, t)+`if`(i>n, 0, (p-> p+[0, p[1]*t])(b(n-i, i-1, t+1))))) end: a:= n-> b(n$2, 0)[2]: seq(a(n), n=0..60);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i+1)/2, 0, If[n == 0, {1, 0}, b[n, i-1, t] + If[i>n, 0, Function[p, p+{0, p[[1]]*t}][b[n-i, i-1, t+1]]]]]; a[n_] := b[n, n, 0][[2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)