A271382 Least k with precisely n partitions k = x + y satisfying d(k) = d(x) + d(y), where d(k) is the number of divisors of k.
2, 14, 10, 26, 44, 45, 126, 68, 99, 104, 162, 117, 98, 124, 232, 164, 148, 200, 260, 333, 231, 244, 248, 297, 273, 284, 315, 406, 332, 345, 385, 430, 344, 399, 388, 436, 429, 488, 465, 495, 472, 525, 561, 555, 621, 556, 632, 604, 652, 712, 536, 693, 735, 675
Offset: 1
Examples
d(10) = d(1) + d(9) = d(3) + d(7) = d(5) + d(5) = 4 and 10 is the least number with 3 partitions of two numbers with this property: therefore a(3) = 10; d(126) = d(21) + d(105) = d(22) + d(104) = d(28) + d(98) = d(38) + d(33) = d(40) + d(86) = d(50) + d(76) = d(63) + d(63) = 12 and 126 is the least number with 7 partitions of two numbers with this property: therefore a(7) = 126.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1200
Programs
-
Maple
with(numtheory): P:=proc(q) local a,h,k,n; for h from 1 to q do for n from 2*h to q do a:=0; for k from 1 to trunc(n/2) do if tau(n)=tau(k)+tau(n-k) then a:=a+1; fi; od; if a=h then print(n); break; fi; od; od; end: P(10^6);
-
Mathematica
nn = 10^3; Table[SelectFirst[Range@ nn, Function[k, With[{e = DivisorSigma[0, k]}, Count[Transpose@ {Range[k - 1, Ceiling[k/2], -1], Range@ Floor[k/2]}, x_ /; Total@ DivisorSigma[0, x] == e] == n]]], {n, 54}] (* Michael De Vlieger, Apr 06 2016 *)
-
PARI
isok(k, n) = {my(nb = 0, tau = numdiv(k)); for (j=1, k\2, if (numdiv(j)+numdiv(k-j) == tau, nb++); if (nb > n, return (0));); nb == n;} a(n) = {k=2; while (!isok(k, n), k++); k;} \\ Michel Marcus, Apr 07 2016