cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271382 Least k with precisely n partitions k = x + y satisfying d(k) = d(x) + d(y), where d(k) is the number of divisors of k.

Original entry on oeis.org

2, 14, 10, 26, 44, 45, 126, 68, 99, 104, 162, 117, 98, 124, 232, 164, 148, 200, 260, 333, 231, 244, 248, 297, 273, 284, 315, 406, 332, 345, 385, 430, 344, 399, 388, 436, 429, 488, 465, 495, 472, 525, 561, 555, 621, 556, 632, 604, 652, 712, 536, 693, 735, 675
Offset: 1

Views

Author

Paolo P. Lava, Apr 06 2016

Keywords

Examples

			d(10) = d(1) + d(9) = d(3) + d(7) = d(5) + d(5) = 4 and 10 is the least number with 3 partitions of two numbers with this property: therefore a(3) = 10;
d(126) = d(21) + d(105) = d(22) + d(104) = d(28) + d(98) = d(38) + d(33) = d(40) + d(86) = d(50) + d(76) = d(63) + d(63) = 12 and 126 is the least number with 7 partitions of two numbers with this property: therefore a(7) = 126.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,h,k,n; for h from 1 to q do for n from 2*h to q do
    a:=0; for k from 1 to trunc(n/2) do if tau(n)=tau(k)+tau(n-k) then a:=a+1; fi; od;
    if a=h then print(n); break; fi; od; od; end: P(10^6);
  • Mathematica
    nn = 10^3; Table[SelectFirst[Range@ nn, Function[k, With[{e = DivisorSigma[0, k]}, Count[Transpose@ {Range[k - 1, Ceiling[k/2], -1], Range@ Floor[k/2]}, x_ /; Total@ DivisorSigma[0, x] == e] == n]]], {n, 54}] (* Michael De Vlieger, Apr 06 2016 *)
  • PARI
    isok(k, n) = {my(nb = 0, tau = numdiv(k)); for (j=1, k\2, if (numdiv(j)+numdiv(k-j) == tau, nb++); if (nb > n, return (0));); nb == n;}
    a(n) = {k=2; while (!isok(k, n), k++); k;} \\ Michel Marcus, Apr 07 2016