cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271387 Numerator of prime(n)#/n!, where prime(n)# is the prime factorial function.

Original entry on oeis.org

1, 2, 3, 5, 35, 77, 1001, 2431, 46189, 1062347, 30808063, 86822723, 3212440751, 10131543907, 435656388001, 20475850236047, 1085220062510491, 3766351981654057, 229747470880897477, 810162134158954261, 57521511525285752531, 4199070341345859934763, 331726556966322934846277
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2016

Keywords

Examples

			1, 2, 3, 5, 35/4, 77/4, 1001/24, 2431/24, 46189/192, 1062347/1728, 30808063/17280, 86822723/17280, 3212440751/207360, 10131543907/207360, 435656388001/2903040, ...
a(8) = 46189, because prime(8)#/8! = (2*3*5*7*11*13*17*19)/(1*2*3*4*5*6*7*8) = 46189/192.
		

Crossrefs

Cf. A000040, A000142, A000720, A002110, A007947, A034386, A049614 (denominator of prime(n)#/n!), A090586, A135568.

Programs

  • Mathematica
    Table[Numerator[Product[Prime@ k, {k, n}]/n!], {n, 0, 22}] (* Michael De Vlieger, Apr 08 2016 *)
  • PARI
    a(n) = numerator(prod(k=1, n, prime(k))/n!); \\ Michel Marcus, Apr 09 2016

Formula

a(n) = prime(n)#/GCD(prime(n)#, n!), where GCD(a, b) is the greatest common divisor.
a(n) = prime(n)#/prime(pi(n))#, where pi(n) is the number of primes <= n.
a(n) = A002110(n)/A034386(n) = A002110(n)/A002110(A000720(n)) = A002110(n)/A007947(A000142(n)).