cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271388 a(n) = 4*a(n-1) + a(n-2) - n for n > 1, with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 6, 22, 89, 372, 1570, 6644, 28137, 119182, 504854, 2138586, 9059185, 38375312, 162560418, 688616968, 2917028273, 12356730042, 52343948422, 221732523710, 939274043241, 3978828696652, 16854588829826, 71397184015932, 302443324893529, 1281170483590022
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2016

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == 4 a[n - 1] + a[n - 2] - n}, a, {n, 28}]
    LinearRecurrence[{6, -8, 2, 1}, {0, 1, 2, 6}, 29]
    nxt[{n_,a_,b_}]:={n+1,b,4b+a-n-1}; NestList[nxt,{1,0,1},30][[;;,2]] (* Harvey P. Dale, Feb 07 2025 *)
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(1-4*x+2*x^2)/((1-x)^2*(1-4*x-x^2)))) \\ Altug Alkan, Apr 06 2016
    
  • PARI
    a(n) = (3*fibonacci(3*n-2) + 2*n+3) >> 3; \\ Kevin Ryde, May 16 2021

Formula

G.f.: x*(1 - 4*x + 2*x^2)/((1 - x)^2*(1 - 4*x - x^2)).
E.g.f.: (1/80)*(10*exp(x)*(2*x + 3) - 3*(5 + 3*sqrt(5))*exp((2 - sqrt(5))*x) + 3*(3*sqrt(5) - 5)*exp((2 + sqrt(5))*x)).
a(n) = 6*a(n-1) - 8*a(n-2) + 2*a(n-3) + a(n-4).
a(n) = (1/80)*(20*n - 3*(5 + 3*sqrt(5))*(2 - sqrt(5))^n + 3*(3*sqrt(5) - 5)*(2 + sqrt(5))^n + 30).
Lim_{n->infinity} a(n + 1)/a(n) = 2 + sqrt(5) = phi^3 = A098317, where phi is the golden ratio (A001622).
a(n) = (2*n + 3 + 3*A033887(n-1))/8. - R. J. Mathar, Mar 12 2017