cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271410 LCM of exponents in binary expansion of 2n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 6, 6, 4, 4, 4, 4, 12, 12, 12, 12, 5, 5, 10, 10, 15, 15, 30, 30, 20, 20, 20, 20, 60, 60, 60, 60, 6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 30, 30, 30, 30, 30, 30, 30, 30, 60, 60, 60, 60, 60, 60, 60, 60, 7, 7, 14, 14, 21, 21, 42
Offset: 0

Views

Author

Peter Kagey, Apr 11 2016

Keywords

Examples

			a(2) = lcm(2) = 2 because 2*2 = 2^2;
a(3) = lcm(1, 2) = 2 because 2*3 = 2^1 + 2^2;
a(7) = lcm(1, 2, 3) = 6 because 2*7 = 2^3 + 2^2 + 2^1.
		

Crossrefs

Programs

  • Mathematica
    lcm[n_]:=Module[{idn2=IntegerDigits[n,2]},LCM@@Pick[Reverse[Range[ Length[ idn2]]], idn2,1]]; Join[{1},Array[lcm,100]] (* Harvey P. Dale, Jan 24 2019 *)
  • PARI
    a(n) = my(ve = select(x->x==1, Vecrev(binary(2*n)), 1)); lcm(vector(#ve, k, ve[k]-1)); \\ Michel Marcus, Apr 12 2016
    
  • PARI
    a(n)=lcm(Vec(select(x->x, Vecrev(binary(n)), 1))) \\ Charles R Greathouse IV, Apr 12 2016
    
  • Python
    from math import lcm
    def A271410(n): return lcm(*(i for i, b in enumerate(bin(n)[:1:-1],1) if b == '1')) # Chai Wah Wu, Dec 12 2022