A271423 Number T(n,k) of set partitions of [n] with maximal block length multiplicity equal to k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 5, 9, 0, 1, 0, 16, 25, 10, 0, 1, 0, 82, 70, 35, 15, 0, 1, 0, 169, 406, 245, 35, 21, 0, 1, 0, 541, 2093, 1036, 385, 56, 28, 0, 1, 0, 2272, 10935, 4984, 2331, 504, 84, 36, 0, 1, 0, 17966, 41961, 37990, 13335, 3717, 840, 120, 45, 0, 1
Offset: 0
Examples
T(4,1) = 5: 1234, 123|4, 124|3, 134|2, 1|234. T(4,2) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34. T(4,4) = 1: 1|2|3|4. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 4, 0, 1; 0, 5, 9, 0, 1; 0, 16, 25, 10, 0, 1; 0, 82, 70, 35, 15, 0, 1; 0, 169, 406, 245, 35, 21, 0, 1; 0, 541, 2093, 1036, 385, 56, 28, 0, 1; 0, 2272, 10935, 4984, 2331, 504, 84, 36, 0, 1; 0, 17966, 41961, 37990, 13335, 3717, 840, 120, 45, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
with(combinat): b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) *b(n-i*j, i-1, k)/j!, j=0..min(k, n/i)))) end: T:= (n, k)-> b(n$2, k)-`if`(k=0, 0, b(n$2, k-1)): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]] * b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i]}]]]; T[n_, k_] := b[n, n, k] - If[k == 0, 0, b[n, n, k - 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)
Comments