cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271423 Number T(n,k) of set partitions of [n] with maximal block length multiplicity equal to k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 5, 9, 0, 1, 0, 16, 25, 10, 0, 1, 0, 82, 70, 35, 15, 0, 1, 0, 169, 406, 245, 35, 21, 0, 1, 0, 541, 2093, 1036, 385, 56, 28, 0, 1, 0, 2272, 10935, 4984, 2331, 504, 84, 36, 0, 1, 0, 17966, 41961, 37990, 13335, 3717, 840, 120, 45, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 07 2016

Keywords

Comments

At least one block length occurs exactly k times, and all block lengths occur at most k times.

Examples

			T(4,1) = 5: 1234, 123|4, 124|3, 134|2, 1|234.
T(4,2) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
T(4,4) = 1: 1|2|3|4.
Triangle T(n,k) begins:
  1;
  0,     1;
  0,     1,     1;
  0,     4,     0,     1;
  0,     5,     9,     0,     1;
  0,    16,    25,    10,     0,    1;
  0,    82,    70,    35,    15,    0,   1;
  0,   169,   406,   245,    35,   21,   0,   1;
  0,   541,  2093,  1036,   385,   56,  28,   0,  1;
  0,  2272, 10935,  4984,  2331,  504,  84,  36,  0, 1;
  0, 17966, 41961, 37990, 13335, 3717, 840, 120, 45, 0, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A007837 (for n>0), A271731, A271732, A271733, A271734, A271735, A271736, A271737, A271738, A271739.
Row sums give A000110.
Main diagonal gives A000012.
T(2n,n) gives A271425.
Cf. A271424.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
            *b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
        end:
    T:= (n, k)-> b(n$2, k)-`if`(k=0, 0, b(n$2, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]] * b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i]}]]]; T[n_, k_] := b[n, n, k] - If[k == 0, 0, b[n, n, k - 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)