A271427 a(n) = 7^n - a(n-1) for n>0, a(0)=0.
0, 7, 42, 301, 2100, 14707, 102942, 720601, 5044200, 35309407, 247165842, 1730160901, 12111126300, 84777884107, 593445188742, 4154116321201, 29078814248400, 203551699738807, 1424861898171642, 9974033287201501, 69818233010410500, 488727631072873507, 3421093417510114542
Offset: 0
Examples
a(2) = 7^2 - a(2-1) = 49 - 7 = 42. a(4) = 7^4 - a(4-1) = 2401 - 301 = 2100.
Links
- Index entries for linear recurrences with constant coefficients, signature (6,7).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{6, 7}, {0, 7}, 30] Table[7 (7^n - (-1)^n)/8, {n, 0, 30}]
-
PARI
vector(50, n, n--; 7*(7^n-(-1)^n)/8) \\ Altug Alkan, Apr 13 2016
-
Python
for n in range(0,10**2):print((int)((7*(7**n-(-1)**n))/8)) # Soumil Mandal, Apr 14 2016
Comments