A271453 Triangle read by rows of coefficients of polynomials C_n(x) = Sum_{k=0..n} (2*k)!*(x - 1)^(n-k)/((k + 1)!*k!).
1, 0, 1, 2, -1, 1, 3, 3, -2, 1, 11, 0, 5, -3, 1, 31, 11, -5, 8, -4, 1, 101, 20, 16, -13, 12, -5, 1, 328, 81, 4, 29, -25, 17, -6, 1, 1102, 247, 77, -25, 54, -42, 23, -7, 1, 3760, 855, 170, 102, -79, 96, -65, 30, -8, 1, 13036, 2905, 685, 68, 181, -175, 161, -95, 38, -9, 1, 45750, 10131, 2220, 617, -113, 356, -336, 256, -133, 47, -10, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 2, -1, 1; 3, 3, -2, 1; 11, 0, 5, -3, 1; 31, 11, -5, 8, -4, 1; ... The first few polynomials are: C_0(x) = 1; C_1(x) = x; C_2(x) = x^2 - x + 2; C_3(x) = x^3 - 2*x^2 + 3*x + 3; C_4(x) = x^4 - 3*x^3 + 5*x^2 + 11; C_5(x) = x^5 - 4*x^4 + 8*x^3 - 5*x^2 + 11*x + 31; ...
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- Ilya Gutkovskiy, Polynomials C_n(x)
- Eric Weisstein's World of Mathematics, Catalan Number
Programs
-
Mathematica
CoefficientList[RecurrenceTable[{c[0] == 1, c[n] == (x - 1) c[n - 1] + CatalanNumber[n]}, c, {n, 11}], x] T[n_, n_]:= 1; T[n_, 0]:= (-1)^n*Sum[CatalanNumber[k]*(-1)^k, {k, 0, n}]; T[n_, k_]:= T[n - 1, k - 1] - T[n - 1, k]; Table[T[n, k], {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 04 2018 *)
-
PARI
{T(n, k) = if(k==n, 1, if(k==0, sum(j=0,n, (-1)^(n-j)*(2*j)!/(j!*(j+1)!)), T(n-1, k-1) - T(n-1, k))) }; for(n=0, 10, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Nov 04 2018
Formula
For triangle: T(n,n)=1, T(n,0) = Sum_{k=0..n} (-1)^(n-k)*(2*k)!/(k! * (k+1)!), T(n, k) = T(n-1, k-1) - T(n-1, k). - G. C. Greubel, Nov 04 2018
Comments