A271476 Total number of burnt pancakes flipped using the Min-bar(n) greedy algorithm.
1, 10, 75, 628, 6325, 75966, 1063615, 17017960, 306323433, 6126468850, 134782314931, 3234775558620, 84104164524445, 2354916606684838, 70647498200545575, 2260719942417458896, 76864478042193603025, 2767121209518969709530, 105150605961720848962843, 4206024238468833958514500
Offset: 1
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..128
- J. Sawada, A. Williams, Successor rules for flipping pancakes and burnt pancakes, Preprint, Theoretical Computer Science, Volume 609, Part 1, 4 January 2016, Pages 60-75.
Programs
-
GAP
List([1..20],n->-n+2^n*Factorial(n)*Sum([0..n-1],k->1/(2^k*Factorial(k)))); # Muniru A Asiru, Aug 02 2018
-
Maple
seq(coeff(series(factorial(n)*exp(x)*(x+2*x^2)/(1-2*x), x,n+1),x,n),n=1..20); # Muniru A Asiru, Aug 02 2018
-
Mathematica
Table[2^n*n! Sum[1/(2^k*k!), {k, 0, n - 1}] - n, {n, 20}] (* Michael De Vlieger, May 25 2016 *)
-
PARI
a(n) = 2^n * n! * sum(k=0, n-1, 1/(2^k*k!)) - n; vector(20, n, a(n)) \\ Gheorghe Coserea, Apr 25 2016
-
PARI
x='x+O('x^99); Vec(serlaplace((x+2*x^2)/(1-2*x)*exp(x))) \\ Altug Alkan, Aug 01 2018
Formula
a(n) = -n + 2^n * n! * Sum_{k=0..n-1} 1/(2^k*k!). (see Sawada link) - Gheorghe Coserea, Apr 25 2016
From Altug Alkan, Aug 01 2018: (Start)
a(n) = A093302(n)/2 for n >= 1.
a(n) = floor(e^(1/2)*n!*2^n)-n-1.
E.g.f.: exp(x)*(x+2*x^2)/(1-2*x). (End)
Extensions
More terms from Gheorghe Coserea, Apr 25 2016