cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271508 Numbers that are congruent to {1,4} mod 10.

Original entry on oeis.org

1, 4, 11, 14, 21, 24, 31, 34, 41, 44, 51, 54, 61, 64, 71, 74, 81, 84, 91, 94, 101, 104, 111, 114, 121, 124, 131, 134, 141, 144, 151, 154, 161, 164, 171, 174, 181, 184, 191, 194, 201, 204, 211, 214, 221, 224, 231, 234, 241, 244, 251, 254, 261, 264, 271, 274
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 08 2016

Keywords

Comments

Numbers ending in 1 or 4, Union of A017281 and A017317.
a(n+3) gives the sum of 5 consecutive terms of A004442 starting at A004442(n) for n>0. (i.e., a(4) = 14 = 0+3+2+5+4 = Sum_{i=0..4} A004442(n+i)).

Crossrefs

Programs

  • Magma
    [5*n-5-(-1)^n : n in [1..100]];
    
  • Maple
    A271508:=n->5*n-5-(-1)^n: seq(A271508(n), n=1..100);
  • Mathematica
    Table[5 n - 5 - (-1)^n, {n, 60}] (* or *)
    Select[Range[0, 300], MemberQ[{1, 4}, Mod[#, 10]] &]
  • PARI
    my(x='x+O('x^99)); Vec(x*(1+3*x+6*x^2)/((-1+x)^2*(1+x))) \\ Altug Alkan, Apr 09 2016

Formula

G.f.: x*(1+3*x+6*x^2)/((-1+x)^2*(1+x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = 5*n - 5 - (-1)^n.
a(n) = -n + 2*A047241(n).
a(n+1) = n + 1 + 2*A042948(n).
Shifted bisections: a(2n+2) = A017317(n), a(2n+1) = A017281(n).
E.g.f.: 5*(x-1)*exp(x) - exp(-x). - G. C. Greubel, Apr 08 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(1+2/sqrt(5))*Pi/10 + log(phi)/sqrt(5) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023