A271508 Numbers that are congruent to {1,4} mod 10.
1, 4, 11, 14, 21, 24, 31, 34, 41, 44, 51, 54, 61, 64, 71, 74, 81, 84, 91, 94, 101, 104, 111, 114, 121, 124, 131, 134, 141, 144, 151, 154, 161, 164, 171, 174, 181, 184, 191, 194, 201, 204, 211, 214, 221, 224, 231, 234, 241, 244, 251, 254, 261, 264, 271, 274
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[5*n-5-(-1)^n : n in [1..100]];
-
Maple
A271508:=n->5*n-5-(-1)^n: seq(A271508(n), n=1..100);
-
Mathematica
Table[5 n - 5 - (-1)^n, {n, 60}] (* or *) Select[Range[0, 300], MemberQ[{1, 4}, Mod[#, 10]] &]
-
PARI
my(x='x+O('x^99)); Vec(x*(1+3*x+6*x^2)/((-1+x)^2*(1+x))) \\ Altug Alkan, Apr 09 2016
Formula
G.f.: x*(1+3*x+6*x^2)/((-1+x)^2*(1+x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = 5*n - 5 - (-1)^n.
a(n) = -n + 2*A047241(n).
a(n+1) = n + 1 + 2*A042948(n).
E.g.f.: 5*(x-1)*exp(x) - exp(-x). - G. C. Greubel, Apr 08 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(1+2/sqrt(5))*Pi/10 + log(phi)/sqrt(5) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023
Comments