cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271525 Decimal expansion of the real part of the derivative of the Dirichlet function eta(z), at z=i, the imaginary unit.

Original entry on oeis.org

2, 3, 5, 9, 2, 0, 9, 4, 8, 0, 5, 0, 4, 4, 0, 9, 2, 3, 6, 3, 4, 0, 7, 9, 2, 6, 7, 6, 0, 3, 0, 5, 8, 4, 3, 4, 7, 6, 0, 4, 1, 9, 5, 7, 3, 5, 8, 9, 5, 9, 1, 5, 1, 2, 9, 4, 8, 3, 0, 4, 6, 6, 0, 0, 4, 5, 9, 5, 9, 5, 9, 8, 4, 0, 8, 0, 3, 1, 6, 2, 6, 5, 2, 4, 3, 4, 5, 7, 3, 8, 7, 0, 1, 0, 6, 7, 3, 6, 2, 1, 6, 0, 3, 7, 5
Offset: 0

Views

Author

Stanislav Sykora, Apr 09 2016

Keywords

Comments

The corresponding imaginary part of eta'(i) is in A271526.

Examples

			0.235920948050440923634079267603058434760419573589591512948304660...
		

Crossrefs

Cf. A271523 (real(eta(i))), A271524 (imag(eta(i))), A271526(-imag(eta'(i))).

Programs

  • Mathematica
    RealDigits[Re[2^(1-I)*Log[2]*Zeta[I] + (1 - 2^(1-I))*Zeta'[I]], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)
    RealDigits[Re[DirichletEta'[I]], 10, 110][[1]] (* Eric W. Weisstein, Jan 06 2024 *)
  • PARI
    \\ Derivative of Dirichlet eta function (fails for z=1):
    derdireta(z)=2^(1-z)*log(2)*zeta(z)+(1-2^(1-z))*zeta'(z);
    real(derdireta(I)) \\ Evaluation

Formula

Equals real(eta'(i)).