A271525 Decimal expansion of the real part of the derivative of the Dirichlet function eta(z), at z=i, the imaginary unit.
2, 3, 5, 9, 2, 0, 9, 4, 8, 0, 5, 0, 4, 4, 0, 9, 2, 3, 6, 3, 4, 0, 7, 9, 2, 6, 7, 6, 0, 3, 0, 5, 8, 4, 3, 4, 7, 6, 0, 4, 1, 9, 5, 7, 3, 5, 8, 9, 5, 9, 1, 5, 1, 2, 9, 4, 8, 3, 0, 4, 6, 6, 0, 0, 4, 5, 9, 5, 9, 5, 9, 8, 4, 0, 8, 0, 3, 1, 6, 2, 6, 5, 2, 4, 3, 4, 5, 7, 3, 8, 7, 0, 1, 0, 6, 7, 3, 6, 2, 1, 6, 0, 3, 7, 5
Offset: 0
Examples
0.235920948050440923634079267603058434760419573589591512948304660...
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..2000
- Eric Weisstein's World of Mathematics, Dirichlet Eta Function
Programs
-
Mathematica
RealDigits[Re[2^(1-I)*Log[2]*Zeta[I] + (1 - 2^(1-I))*Zeta'[I]], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *) RealDigits[Re[DirichletEta'[I]], 10, 110][[1]] (* Eric W. Weisstein, Jan 06 2024 *)
-
PARI
\\ Derivative of Dirichlet eta function (fails for z=1): derdireta(z)=2^(1-z)*log(2)*zeta(z)+(1-2^(1-z))*zeta'(z); real(derdireta(I)) \\ Evaluation
Formula
Equals real(eta'(i)).
Comments