A271528 a(n) = 2*(10^n - 1)^2/27.
0, 6, 726, 73926, 7405926, 740725926, 74073925926, 7407405925926, 740740725925926, 74074073925925926, 7407407405925925926, 740740740725925925926, 74074074073925925925926, 7407407407405925925925926, 740740740740725925925925926, 74074074074073925925925925926
Offset: 0
Examples
n=1: 6 = 2 * 3; n=2: 726 = 22 * 33; n=3: 73926 = 222 * 333; n=4: 7405926 = 2222 * 3333; n=5: 740725926 = 22222 * 33333; n=6: 74073925926 = 222222 * 333333; n=7: 7407405925926 = 2222222 * 3333333; n=8: 740740725925926 = 22222222 * 33333333; n=9: 74074073925925926 = 222222222 * 333333333, etc.
Links
- Ilya Gutkovskiy, Transformation of the Wonderful Demlo numbers
- Eric Weisstein's World of Mathematics, Demlo Number
- Eric Weisstein's World of Mathematics, Repunit
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Mathematica
Table[2 ((10^n - 1)^2/27), {n, 0, 15}] LinearRecurrence[{111, -1110, 1000}, {0, 6, 726}, 16]
-
PARI
x='x+O('x^99); concat(0, Vec(6*x*(1+10*x)/(1-111*x+1110*x^2-1000*x^3))) \\ Altug Alkan, Apr 09 2016
-
Python
for n in range(0,10**1):print((int)((2*(10**n-1)**2)/27)) # Soumil Mandal, Apr 10 2016
Formula
O.g.f.: 6*x*(1 + 10*x)/(1 - 111*x + 1110*x^2 - 1000*x^3).
E.g.f.: 2 (exp(x) - 2*exp(10*x) + exp(100*x))/27.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
Sum_{n>=1} 1/a(n) = 0.1680577405662077350849154881928636039793563...
Lim_{n -> infinity} a(n + 1)/a(n) = 100.
Comments