cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271533 Decimal expansion of the derivative of the Dirichlet function eta(z) at z = -1.

Original entry on oeis.org

2, 6, 5, 2, 1, 4, 3, 7, 0, 9, 1, 4, 7, 0, 4, 3, 5, 1, 1, 6, 9, 3, 4, 8, 2, 7, 3, 5, 7, 5, 6, 1, 6, 4, 0, 5, 6, 0, 0, 2, 7, 5, 7, 6, 2, 8, 8, 5, 5, 2, 0, 2, 6, 6, 2, 9, 2, 6, 7, 3, 5, 8, 2, 5, 7, 4, 2, 8, 1, 2, 2, 5, 0, 0, 9, 8, 3, 3, 2, 7, 9, 7, 4, 3, 2, 8, 7, 5, 2, 5, 3, 3, 2, 0, 5, 3, 3, 7, 0, 7, 6, 7, 7, 9, 7
Offset: 0

Views

Author

Stanislav Sykora, Apr 09 2016

Keywords

Comments

This entry completes the values of the derivatives eta'(z) at z = 0,1,i,-1,-i (see crossrefs).

Examples

			0.265214370914704351169348273575616405600275762885520266292673582574...
		

Crossrefs

Cf. A074962, A256358 (eta'(0)), A091812 (eta'(1)), A271525 (real(eta'(i))), A271526 (-imag(eta'(i))) .

Programs

  • Mathematica
    RealDigits[3*Log[Glaisher] - Log[2]/3 - 1/4, 10, 120][[1]] (* G. C. Greubel, Apr 09 2016 *)
    RealDigits[DirichletEta'[-1], 10, 110][[1]] (* Eric W. Weisstein, Jan 06 2024 *)
  • PARI
    \\ Derivative of Dirichlet eta function (fails for z=1):
    derdireta(z)=2^(1-z)*log(2)*zeta(z)+(1-2^(1-z))*zeta'(z);
    derdireta(-1) \\ Evaluation

Formula

eta'(-1) = 3*log(A) - log(2)/3 - 1/4, where A = A074962 is the Glaisher-Kinkelin constant.