A271549 Primes p such that p+10^2, p+10^3, p+10^5, p+10^7, p+10^11, p+10^13 and p+10^17 are all prime.
1399, 2157763, 13034041, 38208649, 38502313, 41518651, 42745111, 48154147, 49435063, 53872447, 58981513, 75194563, 83037247, 86139409, 101533963, 106287019, 140778403, 144593431, 155554237, 166083133, 166650193, 189371671, 199865893, 201738379, 224472877, 240133753, 271331773
Offset: 1
Keywords
Examples
p = 1399: p+10^2 = 1499 (is prime). p+10^3 = 2399 (is prime). p+10^5 = 101399 (is prime). p+10^7 = 10001399 (is prime). p+10^11 = 100000001399 (is prime). p+10^13 = 10000000001399 (is prime). p+10^17 = 100000000000001399 (is prime).
Programs
-
Mathematica
Select[Prime[Range[10^9]], PrimeQ[# + 10^2] && PrimeQ[# + 10^3] && PrimeQ[# + 10^5] && PrimeQ[# + 10^7] && PrimeQ[# + 10^11] && PrimeQ[# + 10^13] && PrimeQ[# + 10^17] &] (* Robert Price, Apr 10 2016 *)
-
PARI
lista(nn) = forprime(p=2, nn, if (isprime(p+10^2) && isprime(p+10^3) && isprime(p+10^5) && isprime(p+10^7) && isprime(p+10^11) && isprime(p+10^13) && isprime(p+10^17), print1(p, ", "))); \\ Altug Alkan, Apr 10 2016
Extensions
More terms from Altug Alkan, Apr 10 2016
Comments