cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271549 Primes p such that p+10^2, p+10^3, p+10^5, p+10^7, p+10^11, p+10^13 and p+10^17 are all prime.

Original entry on oeis.org

1399, 2157763, 13034041, 38208649, 38502313, 41518651, 42745111, 48154147, 49435063, 53872447, 58981513, 75194563, 83037247, 86139409, 101533963, 106287019, 140778403, 144593431, 155554237, 166083133, 166650193, 189371671, 199865893, 201738379, 224472877, 240133753, 271331773
Offset: 1

Views

Author

Emre APARI, Apr 10 2016

Keywords

Comments

The exponents of 10 are all prime (2,3,5,7,11,13,17).

Examples

			p = 1399:
p+10^2  = 1499 (is prime).
p+10^3  = 2399 (is prime).
p+10^5  = 101399 (is prime).
p+10^7  = 10001399 (is prime).
p+10^11 = 100000001399 (is prime).
p+10^13 = 10000000001399 (is prime).
p+10^17 = 100000000000001399 (is prime).
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10^9]], PrimeQ[# + 10^2] && PrimeQ[# + 10^3] && PrimeQ[# + 10^5] &&  PrimeQ[# + 10^7] && PrimeQ[# + 10^11] &&  PrimeQ[# + 10^13] && PrimeQ[# + 10^17] &] (* Robert Price, Apr 10 2016 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(p+10^2) && isprime(p+10^3) && isprime(p+10^5) && isprime(p+10^7) && isprime(p+10^11) && isprime(p+10^13) && isprime(p+10^17), print1(p, ", "))); \\ Altug Alkan, Apr 10 2016

Extensions

More terms from Altug Alkan, Apr 10 2016