A271592 Array read by antidiagonals: T(n,m) = number of directed Hamiltonian walks from NW to SW corners on a grid with n rows and m columns.
1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 2, 1, 1, 0, 1, 0, 4, 0, 1, 0, 1, 4, 8, 8, 1, 1, 0, 1, 0, 23, 0, 16, 0, 1, 0, 1, 8, 55, 86, 47, 32, 1, 1, 0, 1, 0, 144, 0, 397, 0, 64, 0, 1, 0, 1, 16, 360, 948, 1770, 1584, 264, 128, 1, 1, 0, 1, 0, 921, 0, 11658, 0, 6820, 0, 256, 0, 1
Offset: 1
Examples
The start of the sequence as table: * 1 0 0 0 0 0 0 0 0 ... * 1 1 1 1 1 1 1 1 1 ... * 1 0 2 0 4 0 8 0 16 ... * 1 1 4 8 23 55 144 360 921 ... * 1 0 8 0 86 0 948 0 10444 ... * 1 1 16 47 397 1770 11658 59946 359962 ... * 1 0 32 0 1584 0 88418 0 4999752 ... * 1 1 64 264 6820 52387 909009 8934966 130373192 ... * 1 0 128 0 28002 0 7503654 0 2087813834 ... * ...
Links
- Andrew Howroyd, Antidiagonals n = 1..27, flattened
Crossrefs
Programs
-
Python
# Using graphillion from graphillion import GraphSet import graphillion.tutorial as tl def A271592(n, k): if k == 1: return 1 universe = tl.grid(k - 1, n - 1) GraphSet.set_universe(universe) start, goal = 1, n paths = GraphSet.paths(start, goal, is_hamilton=True) return paths.len() print([A271592(j + 1, i - j + 1) for i in range(12) for j in range(i + 1)]) # Seiichi Manyama, Mar 28 2020
Formula
T(n,m)=0 for n odd and m even, T(1,n)=0 for n>1.
T(2,n)=T(n,1)=T(2*n,2)=1, T(3,2*n+1)=T(n+1,3)=2^n.