cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271661 Expansion of phi(-x^6) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 9, 13, 18, 24, 32, 42, 55, 71, 91, 116, 147, 185, 231, 288, 357, 440, 540, 661, 807, 980, 1186, 1432, 1724, 2069, 2476, 2956, 3521, 4183, 4958, 5865, 6923, 8155, 9587, 11251, 13180, 15411, 17990, 20967, 24399, 28348, 32886, 38098, 44075
Offset: 0

Views

Author

Michael Somos, Apr 11 2016

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Partitions which are "4-close" to being self-conjugate; see A108961 for the definition. - Arvind Ayyer, Apr 13 2021

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 9*x^6 + 13*x^7 + 18*x^8 + ...
G.f. = q^-1 + q^23 + 2*q^47 + 3*q^71 + 5*q^95 + 7*q^119 + 9*q^143 + 13*q^167 + ..
		

References

  • D. M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227, 54 pp.
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988. See page 6 equation 2.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^6] / QPochhammer[ x], {x, 0, n}];
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 QPochhammer[ -x, x^2, k] / QPochhammer[ x, x, 2 k] // FunctionExpand, {k, 0, Sqrt@n}], {x, 0, n}]];
    nmax = 50; CoefficientList[Series[Product[(1-x^(6*k)) / ((1-x^k) * (1+x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 18 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^2 / (eta(x + A) * eta(x^12 + A)), n))};

Formula

Expansion of f(x^2, x^4) / psi(-x) in powers of x where psi(), f(, ) are Ramanujan theta functions.
Expansion of q^(1/24) * eta(q^6)^2 / (eta(q) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 0, ...].
G.f.: Sum_{k>=0} x^(k^2) (-x, x^2)k / (x){2*k}.
a(n) ~ Pi * BesselI(1, Pi*sqrt(24*n-1)/(4*sqrt(3))) / sqrt(24*n-1) ~ exp(sqrt(n/2)*Pi) / (2^(7/4)*sqrt(3)*n^(3/4)) * (1 - (3/(4*Pi) + Pi/48)/sqrt(2*n) + (5/128 - 15/(64*Pi^2) + Pi^2/9216)/n). - Vaclav Kotesovec, Apr 18 2016, extended Jan 10 2017