A271697 Triangle read by rows, T(n,k) = Sum_{j=0..n} C(-j-1,-n-1)*E1(j,k), E1 the Eulerian numbers A173018, for n>=0 and 0<=k<=n.
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 7, 1, 0, 0, 1, 21, 21, 1, 0, 0, 1, 51, 161, 51, 1, 0, 0, 1, 113, 813, 813, 113, 1, 0, 0, 1, 239, 3361, 7631, 3361, 239, 1, 0, 0, 1, 493, 12421, 53833, 53833, 12421, 493, 1, 0, 0, 1, 1003, 42865, 320107, 607009, 320107, 42865, 1003, 1, 0
Offset: 0
Examples
Triangle starts: 1; 0, 0; 0, 1, 0; 0, 1, 1, 0; 0, 1, 7, 1, 0; 0, 1, 21, 21, 1, 0; 0, 1, 51, 161, 51, 1, 0; 0, 1, 113, 813, 813, 113, 1, 0; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Peter Luschny, Extensions of the binomial
Crossrefs
Programs
-
Maple
A271697 := (n,k) -> add(binomial(-j-1,-n-1)*combinat:-eulerian1(j,k), j=0..n): seq(seq(A271697(n, k), k=0..n), n=0..11);
-
Mathematica
<
= 0, 0] = 1; E1[n_, k_] /; k < 0 || k > n = 0; E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k]; T[n_, k_] := Sum[Binomial[-j-1, -n-1] E1[j, k], {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 29 2020 *) -
PARI
T(n)={my(x='x+O('x^(n+1)), v=Vec(serlaplace((y-1)/(y*exp(x)-exp(x*y))))); vector(#v,n,Vecrev(v[n],n))} { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Nov 13 2024
Formula
T(n,k) = T(n,n-k). - Alois P. Heinz, Oct 29 2020