cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271697 Triangle read by rows, T(n,k) = Sum_{j=0..n} C(-j-1,-n-1)*E1(j,k), E1 the Eulerian numbers A173018, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 7, 1, 0, 0, 1, 21, 21, 1, 0, 0, 1, 51, 161, 51, 1, 0, 0, 1, 113, 813, 813, 113, 1, 0, 0, 1, 239, 3361, 7631, 3361, 239, 1, 0, 0, 1, 493, 12421, 53833, 53833, 12421, 493, 1, 0, 0, 1, 1003, 42865, 320107, 607009, 320107, 42865, 1003, 1, 0
Offset: 0

Views

Author

Peter Luschny, Apr 12 2016

Keywords

Examples

			Triangle starts:
  1;
  0, 0;
  0, 1,   0;
  0, 1,   1,   0;
  0, 1,   7,   1,   0;
  0, 1,  21,  21,   1,   0;
  0, 1,  51, 161,  51,   1, 0;
  0, 1, 113, 813, 813, 113, 1, 0;
  ...
		

Crossrefs

Variant: A046739 (main entry for this triangle).
Cf. A000166 (row sums), A122045 (Euler numbers are the alternating row sums), A070313 (col. 2) and (diag. n,n-2).
Cf. A173018.
T(2n,n) gives A320337.

Programs

  • Maple
    A271697 := (n,k) -> add(binomial(-j-1,-n-1)*combinat:-eulerian1(j,k), j=0..n):
    seq(seq(A271697(n, k), k=0..n), n=0..11);
  • Mathematica
    <= 0, 0] = 1;
    E1[n_, k_] /; k < 0 || k > n = 0;
    E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k];
    T[n_, k_] := Sum[Binomial[-j-1, -n-1] E1[j, k], {j, 0, n}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 29 2020 *)
  • PARI
    T(n)={my(x='x+O('x^(n+1)), v=Vec(serlaplace((y-1)/(y*exp(x)-exp(x*y))))); vector(#v,n,Vecrev(v[n],n))}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Nov 13 2024

Formula

T(n,k) = T(n,n-k). - Alois P. Heinz, Oct 29 2020