A271705 Triangle read by rows, T(n,k) = Sum_{j=0..n} C(n,j)*L(j,k), L the unsigned Lah numbers A271703, for n>=0 and 0<=k<=n.
1, 1, 1, 1, 4, 1, 1, 15, 9, 1, 1, 64, 66, 16, 1, 1, 325, 490, 190, 25, 1, 1, 1956, 3915, 2120, 435, 36, 1, 1, 13699, 34251, 23975, 6755, 861, 49, 1, 1, 109600, 328804, 283136, 101990, 17696, 1540, 64, 1, 1, 986409, 3452436, 3534636, 1554966, 342846, 40404, 2556, 81, 1
Offset: 0
Examples
Triangle starts: 1; 1, 1; 1, 4, 1; 1, 15, 9, 1; 1, 64, 66, 16, 1; 1, 325, 490, 190, 25, 1; 1, 1956, 3915, 2120, 435, 36, 1; ... Recurrence: T(3, 2) = (3/2)*4 + 3*1 = 9. - _Wolfdieter Lang_, Jun 20 2017
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
Crossrefs
Programs
-
Magma
B:=Binomial; A271705:= func< n,k | k eq 0 select 1 else (&+[B(n, j+k)*B(j+k, k)*B(j+k-1, k-1)*Factorial(j): j in [0..n-k]]) >; [A271705(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 09 2022
-
Maple
L := (n,k) -> `if`(k<0 or k>n,0,(n-k)!*binomial(n,n-k)*binomial(n-1,n-k)): T := (n,k) -> add(L(j,k)*binomial(-j-1,-n-1)*(-1)^(n-j), j=0..n): seq(seq(T(n,k), k=0..n), n=0..9);
-
Mathematica
T[n_, k_]:= If[k==0, 1, Sum[((k*j!)/(j+k))*Binomial[n, j+k]*Binomial[j+k, k]^2, {j,0,n-k}]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 09 2022 *)
-
Sage
b=binomial def A271705(n,k): return 1 if (k==0) else sum(factorial(j-k)*b(n, j)*b(j, k)*b(j-1, k-1) for j in (k..n)) flatten([[A271705(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 09 2022
Formula
From Wolfdieter Lang, Jun 20 2017: (Start)
T(n, k) = Sum_{m=k..n} A007318(n, m)*A271703(m, k), n >= k >= 0, and 0 for k < m. See also the name.
E.g.f. of column k: exp(x)*(x/(1-x))^k/k! (Sheffer property), k >= 0.
E.g.f. of triangle (or row polynomials in x): exp(z)*exp(x*z/(1-z)).
Recurrence for T(n, k), k >= 1, with T(n, 0) = 1, T(n, k) = 0 if n < k: T(n, k) = (n/k)*T(n-1, k-1) + n*T(n-1, k), n >= 1, k = 1..n. (From the a-sequence with column k=0 as input.) (End)
T(n, k) = Sum_{j=0..n-k} j!*binomial(n, j+k)*binomial(j+k, k)*binomial(j+k-1, k-1) with T(n, 0) = 1. - G. C. Greubel, Jan 09 2022
From Natalia L. Skirrow, Jun 11 2025: (Start)
T(n, k) = C(n, k)*hypergeom([k-n, k], [], -1), which equals C(n, k)*A143409(n-k, k-1) for k>0.
By the saddle point method upon the e.g.f., n-th row polynomial converges with n (for all y) to n^n*exp(2*sqrt(n*y) - n - y/2 + 1)/sqrt(2*sqrt(n/y)); as such, the n-th row's expectation is ~ sqrt(n)-1/4 and the n-th row's variance is ~ (sqrt(n)-1)/2. (End)
Comments