cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271743 Number of set partitions of [n] such that 4 is the largest element of the last block.

Original entry on oeis.org

10, 15, 29, 63, 149, 375, 989, 2703, 7589, 21735, 63149, 185343, 547829, 1627095, 4848509, 14479983, 43308869, 129664455, 388469069, 1164358623, 3490978709, 10468741815, 31397836829, 94176733263, 282496645349, 847422827175, 2542134263789, 7626134355903
Offset: 4

Views

Author

Alois P. Heinz, Apr 13 2016

Keywords

Examples

			a(4) = 10: 1234, 123|4, 12|34, 12|3|4, 13|24, 13|2|4, 1|234, 1|23|4, 1|2|34, 1|2|3|4.
		

Crossrefs

Column k=4 of A271466.

Programs

  • Magma
    I:=[10,15,29,63]; [n le 4 select I[n] else 6*Self(n-1) -11*Self(n-2)+6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 13 2016
    
  • Mathematica
    Join[{10},LinearRecurrence[{6,-11,6},{15,29,63},30]] (* Vincenzo Librandi, Apr 13 2016 *)
  • PARI
    Vec(x^4*(2 - 3*x)*(5 - 15*x + 2*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^40)) \\ Colin Barker, May 21 2017

Formula

G.f.: x^4*(3*x-2)*(2*x^2-15*x+5)/Product_{j=1..3} (j*x-1).
From Colin Barker, May 21 2017: (Start)
G.f.: x^4*(2 - 3*x)*(5 - 15*x + 2*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 4 + 2^(n-2) + 3^(n-4) for n>4.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>7.
(End)