A271743 Number of set partitions of [n] such that 4 is the largest element of the last block.
10, 15, 29, 63, 149, 375, 989, 2703, 7589, 21735, 63149, 185343, 547829, 1627095, 4848509, 14479983, 43308869, 129664455, 388469069, 1164358623, 3490978709, 10468741815, 31397836829, 94176733263, 282496645349, 847422827175, 2542134263789, 7626134355903
Offset: 4
Examples
a(4) = 10: 1234, 123|4, 12|34, 12|3|4, 13|24, 13|2|4, 1|234, 1|23|4, 1|2|34, 1|2|3|4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
- Wikipedia, Partition of a set
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Crossrefs
Column k=4 of A271466.
Programs
-
Magma
I:=[10,15,29,63]; [n le 4 select I[n] else 6*Self(n-1) -11*Self(n-2)+6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 13 2016
-
Mathematica
Join[{10},LinearRecurrence[{6,-11,6},{15,29,63},30]] (* Vincenzo Librandi, Apr 13 2016 *)
-
PARI
Vec(x^4*(2 - 3*x)*(5 - 15*x + 2*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^40)) \\ Colin Barker, May 21 2017
Formula
G.f.: x^4*(3*x-2)*(2*x^2-15*x+5)/Product_{j=1..3} (j*x-1).
From Colin Barker, May 21 2017: (Start)
G.f.: x^4*(2 - 3*x)*(5 - 15*x + 2*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 4 + 2^(n-2) + 3^(n-4) for n>4.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>7.
(End)