A271745 Number of set partitions of [n] such that 6 is the largest element of the last block.
104, 250, 692, 2110, 6932, 24190, 88772, 340030, 1351412, 5546110, 23407652, 101247550, 447454292, 2015029630, 9224364932, 42832260670, 201341787572, 956443162750, 4584181712612, 22137843427390, 107584138943252, 525581866073470, 2578798342362692
Offset: 6
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..1000
- Wikipedia, Partition of a set
- Index entries for linear recurrences with constant coefficients, signature (15,-85,225,-274,120).
Crossrefs
Column k=6 of A271466.
Programs
-
Magma
I:=[104,250,692,2110,6932,24190]; [n le 6 select I[n] else 15*Self(n-1)-85*Self(n-2)+225*Self(n-3)-274*Self(n-4)+120*Self(n-5): n in [1..30]]; // Vincenzo Librandi, Apr 14 2016
-
Mathematica
Join[{104}, LinearRecurrence[{15, -85, 225, -274, 120}, {250, 692, 2110, 6932, 24190}, 30]] (* Vincenzo Librandi, Apr 14 2016 *)
-
PARI
x='x+O('x^99); Vec(2*x^6*(60*x^5-3174*x^4+5210*x^3-2891*x^2+655*x-52) / (120*x^5-274*x^4+225*x^3-85*x^2+15*x-1)) \\ Altug Alkan, Apr 14 2016
Formula
G.f.: 2*x^6*(60*x^5-3174*x^4+5210*x^3-2891*x^2+655*x-52) / Product_{j=1..5} (j*x-1).
From Colin Barker, Jan 04 2018: (Start)
a(n) = 16 + 5*2^(n-3) + 35*3^(n-6) + 11*4^(n-6) + 5^(n-6) for n>6.
a(n) = 15*a(n-1) - 85*a(n-2) + 225*a(n-3) - 274*a(n-4) + 120*a(n-5) for n>11.
(End)