cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271745 Number of set partitions of [n] such that 6 is the largest element of the last block.

Original entry on oeis.org

104, 250, 692, 2110, 6932, 24190, 88772, 340030, 1351412, 5546110, 23407652, 101247550, 447454292, 2015029630, 9224364932, 42832260670, 201341787572, 956443162750, 4584181712612, 22137843427390, 107584138943252, 525581866073470, 2578798342362692
Offset: 6

Views

Author

Alois P. Heinz, Apr 13 2016

Keywords

Crossrefs

Column k=6 of A271466.

Programs

  • Magma
    I:=[104,250,692,2110,6932,24190]; [n le 6 select I[n] else 15*Self(n-1)-85*Self(n-2)+225*Self(n-3)-274*Self(n-4)+120*Self(n-5): n in [1..30]]; // Vincenzo Librandi, Apr 14 2016
    
  • Mathematica
    Join[{104}, LinearRecurrence[{15, -85, 225, -274, 120}, {250, 692, 2110, 6932, 24190}, 30]] (* Vincenzo Librandi, Apr 14 2016 *)
  • PARI
    x='x+O('x^99); Vec(2*x^6*(60*x^5-3174*x^4+5210*x^3-2891*x^2+655*x-52) / (120*x^5-274*x^4+225*x^3-85*x^2+15*x-1)) \\ Altug Alkan, Apr 14 2016

Formula

G.f.: 2*x^6*(60*x^5-3174*x^4+5210*x^3-2891*x^2+655*x-52) / Product_{j=1..5} (j*x-1).
From Colin Barker, Jan 04 2018: (Start)
a(n) = 16 + 5*2^(n-3) + 35*3^(n-6) + 11*4^(n-6) + 5^(n-6) for n>6.
a(n) = 15*a(n-1) - 85*a(n-2) + 225*a(n-3) - 274*a(n-4) + 120*a(n-5) for n>11.
(End)