cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271746 Number of set partitions of [n] such that 7 is the largest element of the last block.

Original entry on oeis.org

406, 1145, 3627, 12521, 46299, 181265, 745107, 3195161, 14220459, 65412065, 309878787, 1507297001, 7508078619, 38208764465, 198238593267, 1046593626041, 5612793712779, 30528112814465, 168152752952547, 936705967782281, 5270538854994939, 29919810501018065
Offset: 7

Views

Author

Alois P. Heinz, Apr 13 2016

Keywords

Crossrefs

Column k=7 of A271466.

Programs

  • Mathematica
    LinearRecurrence[{21,-175,735,-1624,1764,-720},{406,1145,3627,12521,46299,181265,745107},30] (* Harvey P. Dale, Jun 12 2022 *)
  • PARI
    Vec(x^7*(406 - 7381*x + 50632*x^2 - 161681*x^3 + 235852*x^4 - 122388*x^5 + 720*x^6) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)) + O(x^40)) \\ Colin Barker, Jan 04 2018

Formula

G.f.: x^7*(720*x^6-122388*x^5+235852*x^4-161681*x^3+50632*x^2-7381*x+406) / Product_{j=1..6} (j*x-1).
From Colin Barker, Jan 04 2018: (Start)
a(n) = 32 + 121*2^(n-7) + 155*3^(n-7) + 5*4^(n-5) + 16*5^(n-7) + 6^(n-7) for n>7.
a(n) = 21*a(n-1) - 175*a(n-2) + 735*a(n-3) - 1624*a(n-4) + 1764*a(n-5) - 720*a(n-6) for n>13.
(End)