cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271747 Number of set partitions of [n] such that 8 is the largest element of the last block.

Original entry on oeis.org

1754, 5649, 20085, 77133, 315597, 1362669, 6164685, 29058813, 142084077, 717966669, 3737612685, 19991467293, 109605434157, 614681711469, 3519553748685, 20540447808573, 121996580169837, 736352527581069, 4510823754140685, 28011087761890653, 176122939449075117
Offset: 8

Views

Author

Alois P. Heinz, Apr 13 2016

Keywords

Crossrefs

Column k=8 of A271466.

Programs

  • PARI
    Vec(x^8*(1754 - 43463*x + 426701*x^2 - 2104109*x^3 + 5424029*x^4 - 6799268*x^5 + 3145476*x^6 - 5040*x^7) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)) + O(x^40)) \\ Colin Barker, Jan 04 2018

Formula

G.f.: x^8 *(5040*x^7 -3145476*x^6 +6799268*x^5 -5424029*x^4 +2104109*x^3 -426701*x^2 +43463*x -1754)/Product_{j=1..7} (j*x-1).
From Colin Barker, Jan 04 2018: (Start)
a(n) = 64 + 91*2^(n-6) + 245*2^(2*n-15) + 11*2^(n-7)*3^(n-8) + 217*3^(n-7) + 161*5^(n-8) + 7^(n-8) for n>8.
a(n) = 28*a(n-1) - 322*a(n-2) + 1960*a(n-3) - 6769*a(n-4) + 13132*a(n-5) - 13068*a(n-6) + 5040*a(n-7) for n>15.
(End)