cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271785 a(n) = Sum_{k=0..(n-1)/2} (n+2-k)*binomial(n-1-k,k).

Original entry on oeis.org

0, 3, 4, 9, 16, 30, 54, 97, 172, 303, 530, 922, 1596, 2751, 4724, 8085, 13796, 23478, 39858, 67517, 114140, 192603, 324454, 545714, 916536, 1537275, 2575204, 4308897, 7201912, 12025038, 20058990, 33430297, 55667596, 92622471, 153992954, 255842890
Offset: 0

Views

Author

R. J. Mathar, Apr 14 2016

Keywords

Comments

This is a sibling to the expansions A001629(n+1) = Sum_{k=0..(n-1)/2} (n-k) *binomial(n-1-k,k) and A226432(n+3) = Sum_{k=0..(n-1)/2} (n+1-k) *binomial(n-1-k,k).

Crossrefs

Cf. A001629.

Programs

  • Maple
    A271785 := proc(n)
        add( (n+2-k)*binomial(n-1-k,k),k=0..(n-1)/2) ;
    end proc:
  • Mathematica
    LinearRecurrence[{2,1,-2,-1},{0,3,4,9},40] (* Harvey P. Dale, May 05 2020 *)
  • PARI
    concat(0, Vec(x*(3-2*x-2*x^2)/(1-x-x^2)^2 + O(x^50))) \\ Colin Barker, Apr 14 2016

Formula

G.f.: x*(3-2*x-2*x^2) / (1-x-x^2)^2.
a(n) = 3*A001629(n+1) -2*A001629(n) -2*A001629(n-1).
From Colin Barker, Apr 14 2016: (Start)
a(n) = (2^(-1-n)*(-24*sqrt(5)*((1-sqrt(5))^n-(1+sqrt(5))^n)+5*((1-sqrt(5))^(1+n)+(1+sqrt(5))^(1+n))*n))/25.
a(n) = 2*a(n-1)+a(n-2)-2*a(n-3)-a(n-4) for n>3. (End)
E.g.f.: (1/25)*(sqrt(5)*(5*x + 24)*sinh((sqrt(5)*x)/2) + 15*x*cosh((sqrt(5)*x)/2))*exp(x/2). - Ilya Gutkovskiy, Apr 14 2016
a(n) = A006355(n+1)+A001629(n+1). - R. J. Mathar, May 20 2016