A271801 Smallest composite k such that k divides (n^(k-1)-1)/(n-1), n > 1.
341, 91, 85, 217, 217, 25, 9, 91, 91, 133, 65, 85, 15, 341, 91, 9, 25, 49, 21, 221, 169, 91, 25, 91, 9, 121, 145, 15, 49, 49, 25, 85, 35, 9, 403, 133, 39, 341, 121, 21, 529, 25, 9, 133, 133, 65, 49, 25, 51, 91, 265, 9, 55, 91, 57, 25, 341, 15, 341, 91, 9, 481, 65, 33, 469, 49, 25, 35, 169, 9, 85, 65
Offset: 2
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Crossrefs
Cf. A001358.
Programs
-
Maple
Comps:= remove(isprime, [seq(k,k=9..10^6,2)]): f:= proc(n) local k; for k in Comps do if (n^(k-1)-1)/(n-1) mod k = 0 then return k fi od: error "ran out of composites" end proc: seq(f(n),n=2..100); # Robert Israel, Apr 14 2016
-
Mathematica
Table[SelectFirst[Range[10^3], CompositeQ@ # && Divisible[(n^(# - 1) - 1)/(n - 1), #] &], {n, 2, 73}] (* Michael De Vlieger, Apr 14 2016, Version 10 *)
-
PARI
a(n) = {my(k = 4); while ((n^(k-1)-1)/(n-1) % k, k++; if (isprime(k), k++)); k;} \\ Michel Marcus, Apr 14 2016
Extensions
More terms from Michael De Vlieger, Apr 14 2016
Comments