cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271811 Number of non-abelian groups of order prime(n)^6.

Original entry on oeis.org

256, 493, 673, 849, 1181, 1465, 1933, 2253, 2865, 4057, 4529, 6001, 7053, 7653, 8841, 10897, 13125, 14001, 16509, 18281, 19285, 22233, 24285, 27637, 32461, 34953, 36273, 38901, 40345, 43117, 53769, 56981, 62053, 63813, 72817, 74729, 80521, 86493, 90561, 96937, 103485, 105801, 117281
Offset: 1

Views

Author

Altug Alkan, Apr 14 2016

Keywords

Comments

A000688(p^6) is 11 for all prime p.

Crossrefs

Programs

  • GAP
    A271811 := Concatenation([256, 493], List(Filtered([5..10^4], IsPrime), p -> 3 * p^2 + 39 * p + 333 + 24 * Gcd(p-1, 3) + 11 * Gcd(p-1, 4) + 2 * Gcd(p-1,5))); # Muniru A Asiru, Nov 18 2017
  • Mathematica
    Table[FiniteGroupCount[#] - FiniteAbelianGroupCount[#] &[Prime[n]^6], {n, 43}] (* Michael De Vlieger, Apr 15 2016, after Vladimir Joseph Stephan Orlovsky at A060689 *)
  • PARI
    a(n) = if (n==1, 256, if (n==2, 493, my(p=prime(n)); 3*p^2 + 39*p + 333 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5)));
    

Formula

a(n) = A232106(n) - 11.
a(n) = A060689(prime(n)^6) = A060689(A030516(n)).
For a prime p > 3, the number of non-abelian groups of order p^6 is 3p^2 + 39p + 333 + 24 gcd(p - 1, 3) + 11 gcd(p - 1, 4) + 2 gcd(p - 1, 5).