A271816 Deficient-perfect numbers: Deficient numbers n such that n/(2n-sigma(n)) is an integer.
1, 2, 4, 8, 10, 16, 32, 44, 64, 128, 136, 152, 184, 256, 512, 752, 884, 1024, 2048, 2144, 2272, 2528, 4096, 8192, 8384, 12224, 16384, 17176, 18632, 18904, 32768, 32896, 33664, 34688, 49024, 63248, 65536, 85936, 106928, 116624, 117808, 131072, 262144, 524288, 526688, 527872, 531968, 556544, 589312, 599072, 654848, 709784
Offset: 1
Keywords
Examples
When n = 1, 2, 4, 8, 2n - sigma(n) = 1. When n = 10, sigma(10) = 18 and so 2*10 - 18 = 2, which divides 10.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..273 (terms < 2*10^12)
- BYU Computational Number Theory Group, Odd, spoof perfect factorizations, arXiv:2006.10697 [math.NT], 2020.
- Jose A. B. Dris, Conditions Equivalent to the Descartes-Frenicle-Sorli Conjecture on Odd Perfect Numbers, Notes on Number Theory and Discrete Mathematics, Vol. 23, No. 2 (2017), pp. 12-20, arXiv preprint, arXiv:1610.01868 [math.NT], 2016.
- Jose Arnaldo Bebita Dris and Doli-Jane Uvales Tejada, A note on the OEIS sequence A228059, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 1, 199-205.
- Hùng Việt Chu, Divisibility of Divisor Functions of Even Perfect Numbers, J. Int. Seq., Vol. 24 (2021), Article 21.3.4.
- Cui-Fang Sun and Zhao-Cheng He, On odd deficient-perfect numbers with four distinct prime divisors, arXiv:1908.04932 [math.NT], 2019.
- Judy Holdener and Emily Rachfal, Perfect and Deficient Perfect Numbers, The American Mathematical Monthly, Vol. 126, No. 6 (2019), pp. 541-546.
- M. Tang, X. Z. Ren, and M. Li, On Near-Perfect and Deficient-Perfect Numbers, Colloq. Math. 133 (2013), 221-226.
- M. Tang and M. Feng, On Deficient-Perfect Numbers, Bull. Aust. Math. Soc. 90 (2014), 186-194.
Crossrefs
Programs
-
Maple
q:= k-> (s-> s>0 and irem(k, s)=0)(2*k-numtheory[sigma](k)): select(q, [$1..500000])[]; # Alois P. Heinz, Aug 26 2023
-
Mathematica
ok[n_] := Block[{d = DivisorSigma[1, n]}, d < 2*n && Divisible[n, 2*n - d]]; Select[Range[10^5], ok] (* Giovanni Resta, Apr 14 2016 *)
-
PARI
isok(n) = ((ab = (sigma(n)-2*n))<0) && (n % ab == 0); \\ Michel Marcus, Apr 15 2016
Formula
2^k is always an element of this sequence.
If 2^(k+1) + 2^t - 1 is an odd prime and t <= k, then n = 2^k(2^(k+1) + 2^t - 1) is deficient-perfect with 2n - sigma(n) = 2^t. In fact, these are the only terms with two distinct prime factors. (Tang et al.)
Comments