cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271830 Expansion of (3 - 4*x + 3*x^2 + x^4)/((1 - x)^2*(1 + x^2 + x^4)).

Original entry on oeis.org

3, 2, 1, 4, 5, 6, 9, 8, 7, 10, 11, 12, 15, 14, 13, 16, 17, 18, 21, 20, 19, 22, 23, 24, 27, 26, 25, 28, 29, 30, 33, 32, 31, 34, 35, 36, 39, 38, 37, 40, 41, 42, 45, 44, 43, 46, 47, 48, 51, 50, 49, 52, 53, 54, 57, 56, 55, 58, 59, 60, 63, 62, 61, 64, 65, 66, 69, 68, 67, 70, 71, 72, 75, 74, 73
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 18 2016

Keywords

Comments

Permutation of the positive integers, with 6k+1 and 6k+3 swapped for every k.

Crossrefs

Programs

  • Magma
    [3 - n + 4*Floor(n/6) + 2*Floor((n+1)/6) + 2*Floor((n+2)/6) + 4*Floor((n+3)/6) : n in [0..100]]; // Wesley Ivan Hurt, Apr 20 2016
  • Maple
    A271830:=n->3-n+4*floor(n/6)+2*floor((n+1)/6)+2*floor((n+2)/6)+4*floor((n+3)/6): seq(A271830(n), n=0..150); # Wesley Ivan Hurt, Apr 20 2016
  • Mathematica
    CoefficientList[Series[(3 - 4 x + 3 x^2 + x^4)/((1 - x)^2 (1 + x^2 + x^4)), {x, 0, 75}], x]
    LinearRecurrence[{2, -2, 2, -2, 2, -1}, {3, 2, 1, 4, 5, 6}, 75]
  • PARI
    x='x+O('x^99); Vec((3-4*x+3*x^2+x^4)/((1-x)^2*(1+x^2+x^4))) \\ Altug Alkan, Apr 18 2016
    

Formula

G.f.: (3 - 4*x + 3*x^2 + x^4)/((1 - x)^2*(1 + x^2 + x^4)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6).
a(n) = 3 - n + 4*floor(n/6) + 2*floor((n+1)/6) + 2*floor((n+2)/6) + 4*floor((n+3)/6). - Vaclav Kotesovec, Apr 19 2016