cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271844 G.f. A(x) satisfies: A(x) = x + A( A(x)^2 + A(x)^4 ).

Original entry on oeis.org

1, 1, 2, 7, 26, 102, 420, 1793, 7854, 35106, 159492, 734334, 3418892, 16068532, 76135112, 363283763, 1744135306, 8419281306, 40838500796, 198950342814, 972999755364, 4775441138580, 23513016382120, 116111875760294, 574927064750460, 2853800953323468, 14197997592237912, 70786396399962476, 353611516341840008, 1769694222850151128
Offset: 1

Views

Author

Paul D. Hanna, Apr 15 2016

Keywords

Comments

Compare g.f. to: C(x) = x + C( C(x)^2 - C(x)^4 ) where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 7*x^4 + 26*x^5 + 102*x^6 + 420*x^7 + 1793*x^8 + 7854*x^9 + 35106*x^10 + 159492*x^11 + 734334*x^12 +...
where A(x) = x + A( A(x)^2 + A(x)^4 ).
RELATED SERIES.
A(x)^2 + A(x)^4 = x^2 + 2*x^3 + 6*x^4 + 22*x^5 + 84*x^6 + 340*x^7 + 1434*x^8 + 6226*x^9 + 27632*x^10 + 124820*x^11 + 572000*x^12 +...
A(x^2 + x^4) = x^2 + 2*x^4 + 4*x^6 + 14*x^8 + 60*x^10 + 276*x^12 + 1320*x^14 + 6530*x^16 + 33188*x^18 + 172252*x^20 + 909016*x^22 +...
where the series reversion of A(x) equals x - A(x^2 + x^4).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x+x^2 +x*O(x^n)); for(i=1,n, A = x + subst(A,x,A^2 + A^4) ) ; polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A( x - A(x^2 + x^4) ) = x.
(2) A(x) = x + Sum_{n>=0} d^n/dx^n A(x^2+x^4)^(n+1) / (n+1)!.
(3) A(x) = x*exp( Sum_{n>=0} d^n/dx^n A(x^2+x^4)^(n+1)/x / (n+1)! ).
a(n) ~ c * d^n / n^(3/2), where d = 5.26908951612012208739853420341892... and c = 0.063610446185354820395355587671... . - Vaclav Kotesovec, Apr 16 2016