cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271929 G.f. A(x) satisfies: A(x)^3 = A(x^3) / (1 - 3*x).

Original entry on oeis.org

1, 1, 2, 5, 12, 31, 83, 224, 615, 1708, 4777, 13455, 38110, 108428, 309714, 887666, 2551575, 7353423, 21240460, 61478489, 178269670, 517784717, 1506162369, 4387201004, 12795170784, 37359689295, 109199349181, 319493390481, 935616592227, 2742209152877, 8043500169958, 23610710680582, 69354125493930, 203852682699869, 599549063015417, 1764338532368820
Offset: 1

Views

Author

Paul D. Hanna, Apr 17 2016

Keywords

Comments

Compare g.f. to: G(x)^2 = G(x^2)/(1 - 2*x) where G(x) is the g.f. of A123916, the EULER transform of A000048.

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 31*x^6 + 83*x^7 + 224*x^8 + 615*x^9 + 1708*x^10 + 4777*x^11 + 13455*x^12 +...
where A(x)^3 = A(x^3) / (1 - 3*x).
Also, when expressed as the EULER transform of A046211,
A(x) = x/( (1-x) * (1-x^2) * (1-x^3)^3 * (1-x^4)^6 * (1-x^5)^16 * (1-x^6)^39 * (1-x^7)^104 * (1-x^8)^270 * (1-x^9)^729 *...* (1-x^n)^A046211(n) *...).
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 28*x^6 + 84*x^7 + 252*x^8 + 758*x^9 + 2274*x^10 + 6822*x^11 + 20471*x^12 + 61413*x^13 + 184239*x^14 +...
		

Crossrefs

Cf. A123916.

Programs

  • PARI
    {a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^3)/(1 - 3*x +x*O(x^n)))^(1/3)); polcoeff(G=A, n)}
    for(n=1, 50, print1(a(n), ", "))

Formula

The EULER transform of A046211, where A046211(n) is the number of ternary Lyndon words whose digits sum to 1 (or 2) mod 3.
a(n) ~ c * 3^n / n^(2/3), where c = 0.1260671867244258410294918... . - Vaclav Kotesovec, Apr 18 2016