A123916
Number of binary words whose (unique) decreasing Lyndon decomposition is into Lyndon words each with an odd number of 1's; EULER transform of A000048.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 19, 34, 65, 120, 229, 432, 829, 1583, 3051, 5874, 11370, 22012, 42756, 83113, 161917, 315723, 616588, 1205232, 2358604, 4619485, 9055960, 17766086, 34880215, 68524486, 134707150, 264960828, 521449025
Offset: 1
The binary words 1111, 1101, 1001, 0101, 0111, 0001 of length 4 decompose as 1*1*1*1, 1*1*01, 1*001, 01*01, 0111, 0001 and each subword has an odd number of 1's, therefore a(4)=6.
G.f. A(x) = x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 19*x^7 + 34*x^8 + ... such that A(x)^2 * (1 - 2*x) = A(x^2).
-
/* G.f. A(x) satisfies: A(x)^2 = A(x^2)/(1 - 2*x) */
{a(n) = my(A=x); for(i=1,n, A = sqrt( subst(A,x, x^2)/(1 - 2*x +x*O(x^n)))); polcoeff(A,n)}
for(n=1,50, print1(a(n),", ")) \\ Paul D. Hanna, Apr 17 2016
-
/* As the EULER transform of A000048 */
{A000048(n) = sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d)))/(2*n)} \\ Michael B. Porter
{a(n) = polcoeff( prod(k=1,n, 1/(1 - x^k +x*O(x^n))^A000048(k)), n-1)}
for(n=1,50, print1(a(n),", ")) \\ Paul D. Hanna, Apr 17 2016
A372535
G.f. A(x) satisfies: A(x)^5 = A(x^5) / (1 - 5*x).
Original entry on oeis.org
1, 1, 3, 11, 44, 185, 801, 3547, 15961, 72710, 334463, 1550679, 7236463, 33955573, 160075762, 757689991, 3599019810, 17148240314, 81930357294, 392402777679, 1883531191109, 9058879060004, 43647287768424, 210645440011836, 1018118905986455, 4927692357099550, 23880341433363005
Offset: 1
G.f.: A(x) = x + x^2 + 3*x^3 + 11*x^4 + 44*x^5 + 185*x^6 + 801*x^7 + 3547*x^8 + 15961*x^9 + 72710*x^10 + 334463*x^11 + 1550679*x^12 +...
where A(x)^5 = A(x^5) / (1 - 5*x).
Also, when expressed as the EULER transform of A054662,
A(x) = x/( (1-x) * (1-x^2)^2 * (1-x^3)^8 * (1-x^4)^30 * (1-x^5)^125 * (1-x^6)^516 * (1-x^7)^2232 * (1-x^8)^9750 * ... * (1-x^n)^A054662(n) * ... ).
RELATED SERIES.
A(x)^5 = x^5 + 5*x^6 + 25*x^7 + 125*x^8 + 625*x^9 + 3126*x^10 + 15630*x^11 + 78150*x^12 + 390750*x^13 + 1953750*x^14 + 9768753*x^15 + ...
-
{a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^5)/(1 - 5*x +x*O(x^n)))^(1/5)); polcoeff(A, n)}
for(n=1, 50, print1(a(n), ", "))
-
/* EULER transform of A054662 */
{A054662(n) = 1/(5*n) * sumdiv(n, d, if(gcd(d, 5)==1, moebius(d)*5^(n/d), 0 ) )} \\ after Joerg Arndt's program in A046211
{a(n) = my(A = x/prod(m=1, n, (1-x^m +x*O(x^n))^A054662(m))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A372870
G.f. A(x) satisfies A(x)^3 = A(x^3) / (1 - 3*x)^3 with A(0)=1.
Original entry on oeis.org
1, 3, 9, 28, 84, 252, 758, 2274, 6822, 20471, 61413, 184239, 552729, 1658187, 4974561, 14923714, 44771142, 134313426, 402940361, 1208821083, 3626463249, 10879389971, 32638169913, 97914509739, 293743529832, 881230589496, 2643691768488, 7931075307172
Offset: 0
A(x)^3 = 1 + 9*x + 54*x^2 + 273*x^3 + 1242*x^4 + 5265*x^5 + 21231*x^6 + ... .
-
b(n, k) = sumdiv(n, d, (gcd(d, k)==1)*(moebius(d)*k^(n/d)))/(k*n);
my(N=30, x='x+O('x^N)); Vec(1/prod(k=1, N, (1 - x^k)^b(k, 3))^3)
A386647
G.f. A(x) satisfies: A(x)^7 = A(x^7) / (1 - 7*x).
Original entry on oeis.org
1, 1, 4, 20, 110, 638, 3828, 23515, 146968, 930797, 5957100, 38450370, 249927394, 1634140604, 10738638021, 70875009760, 469546933535, 3121106054760, 20807373517870, 139080864081230, 931841783576460, 6256651942091035, 42090203778813320, 283651372136401905, 1914646755015446620
Offset: 1
G.f.: A(x) = x + x^2 + 4*x^3 + 20*x^4 + 110*x^5 + 638*x^6 + 3828*x^7 + 23515*x^8 + 146968*x^9 + 930797*x^10 + 5957100*x^11 + 38450370*x^12 +...
where A(x)^7 = A(x^7) / (1 - 7*x).
Also, when expressed as the EULER transform of A373277,
A(x) = x/( (1-x) * (1-x^2)^3 * (1-x^3)^16 * (1-x^4)^84 * (1-x^5)^480 * (1-x^6)^2792 * (1-x^7)^16807 * (1-x^8)^102900 * ... * (1-x^n)^A373277(n) * ... ).
RELATED SERIES.
A(x)^7 = x^7 + 7*x^8 + 49*x^9 + 343*x^10 + 2401*x^11 + 16807*x^12 + 117649*x^13 + 823544*x^14 + 5764808*x^15 + ...
-
{a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^7)/(1 - 7*x +x*O(x^n)))^(1/7)); polcoeff(A, n)}
for(n=1, 50, print1(a(n), ", "))
-
/* EULER transform of A373277 */
{A373277(n) = 1/(7*n) * sumdiv(n, d, (gcd(d, 7)==1)*(moebius(d)*7^(n/d)))} \\ after Seiichi Manyama in A373277
{a(n) = my(A = x/prod(m=1, n, (1-x^m +x*O(x^n))^A373277(m))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
Showing 1-4 of 4 results.
Comments