A271929
G.f. A(x) satisfies: A(x)^3 = A(x^3) / (1 - 3*x).
Original entry on oeis.org
1, 1, 2, 5, 12, 31, 83, 224, 615, 1708, 4777, 13455, 38110, 108428, 309714, 887666, 2551575, 7353423, 21240460, 61478489, 178269670, 517784717, 1506162369, 4387201004, 12795170784, 37359689295, 109199349181, 319493390481, 935616592227, 2742209152877, 8043500169958, 23610710680582, 69354125493930, 203852682699869, 599549063015417, 1764338532368820
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 31*x^6 + 83*x^7 + 224*x^8 + 615*x^9 + 1708*x^10 + 4777*x^11 + 13455*x^12 +...
where A(x)^3 = A(x^3) / (1 - 3*x).
Also, when expressed as the EULER transform of A046211,
A(x) = x/( (1-x) * (1-x^2) * (1-x^3)^3 * (1-x^4)^6 * (1-x^5)^16 * (1-x^6)^39 * (1-x^7)^104 * (1-x^8)^270 * (1-x^9)^729 *...* (1-x^n)^A046211(n) *...).
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 28*x^6 + 84*x^7 + 252*x^8 + 758*x^9 + 2274*x^10 + 6822*x^11 + 20471*x^12 + 61413*x^13 + 184239*x^14 +...
-
{a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^3)/(1 - 3*x +x*O(x^n)))^(1/3)); polcoeff(G=A, n)}
for(n=1, 50, print1(a(n), ", "))
A372535
G.f. A(x) satisfies: A(x)^5 = A(x^5) / (1 - 5*x).
Original entry on oeis.org
1, 1, 3, 11, 44, 185, 801, 3547, 15961, 72710, 334463, 1550679, 7236463, 33955573, 160075762, 757689991, 3599019810, 17148240314, 81930357294, 392402777679, 1883531191109, 9058879060004, 43647287768424, 210645440011836, 1018118905986455, 4927692357099550, 23880341433363005
Offset: 1
G.f.: A(x) = x + x^2 + 3*x^3 + 11*x^4 + 44*x^5 + 185*x^6 + 801*x^7 + 3547*x^8 + 15961*x^9 + 72710*x^10 + 334463*x^11 + 1550679*x^12 +...
where A(x)^5 = A(x^5) / (1 - 5*x).
Also, when expressed as the EULER transform of A054662,
A(x) = x/( (1-x) * (1-x^2)^2 * (1-x^3)^8 * (1-x^4)^30 * (1-x^5)^125 * (1-x^6)^516 * (1-x^7)^2232 * (1-x^8)^9750 * ... * (1-x^n)^A054662(n) * ... ).
RELATED SERIES.
A(x)^5 = x^5 + 5*x^6 + 25*x^7 + 125*x^8 + 625*x^9 + 3126*x^10 + 15630*x^11 + 78150*x^12 + 390750*x^13 + 1953750*x^14 + 9768753*x^15 + ...
-
{a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^5)/(1 - 5*x +x*O(x^n)))^(1/5)); polcoeff(A, n)}
for(n=1, 50, print1(a(n), ", "))
-
/* EULER transform of A054662 */
{A054662(n) = 1/(5*n) * sumdiv(n, d, if(gcd(d, 5)==1, moebius(d)*5^(n/d), 0 ) )} \\ after Joerg Arndt's program in A046211
{a(n) = my(A = x/prod(m=1, n, (1-x^m +x*O(x^n))^A054662(m))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A372957
G.f. A(x) satisfies A(x)^2 = A(x^2) / (1 - 2*x)^2 with A(0)=1.
Original entry on oeis.org
1, 2, 5, 10, 22, 44, 91, 182, 370, 740, 1490, 2980, 5979, 11958, 23950, 47900, 95865, 191730, 383580, 767160, 1534549, 3069098, 6138628, 12277256, 24555341, 49110682, 98222947, 196445894, 392894839, 785789678, 1571585230, 3143170460, 6286352290, 12572704580, 25145431172
Offset: 0
A(x)^2 = 1 + 4*x + 14*x^2 + 40*x^3 + 109*x^4 + 276*x^5 + 678*x^6 + ... .
-
b(n, k) = sumdiv(n, d, (gcd(d, k)==1)*(moebius(d)*k^(n/d)))/(k*n);
my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, (1 - x^k)^b(k, 2))^2)
A329276
Expansion of 1 / (1 - Sum_{k>=1} mu(2*k) * log(1 - 2 * x^k) / (2 * k)), where mu = A008683.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 45, 102, 232, 528, 1204, 2748, 6276, 14342, 32787, 74976, 171495, 392337, 897696, 2054232, 4701202, 10759689, 24627245, 56370546, 129034271, 295373313, 676158166, 1547869038, 3543458906, 8111974160, 18570800837, 42514665175, 97330789942, 222825306335
Offset: 0
-
nmax = 33; CoefficientList[Series[1/(1 - Sum[MoebiusMu[2 k] Log[1 - 2 x^k]/(2 k), {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[(1/(2 k)) DivisorSum[k, MoebiusMu[#] 2^(k/#) &, OddQ] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]
A386647
G.f. A(x) satisfies: A(x)^7 = A(x^7) / (1 - 7*x).
Original entry on oeis.org
1, 1, 4, 20, 110, 638, 3828, 23515, 146968, 930797, 5957100, 38450370, 249927394, 1634140604, 10738638021, 70875009760, 469546933535, 3121106054760, 20807373517870, 139080864081230, 931841783576460, 6256651942091035, 42090203778813320, 283651372136401905, 1914646755015446620
Offset: 1
G.f.: A(x) = x + x^2 + 4*x^3 + 20*x^4 + 110*x^5 + 638*x^6 + 3828*x^7 + 23515*x^8 + 146968*x^9 + 930797*x^10 + 5957100*x^11 + 38450370*x^12 +...
where A(x)^7 = A(x^7) / (1 - 7*x).
Also, when expressed as the EULER transform of A373277,
A(x) = x/( (1-x) * (1-x^2)^3 * (1-x^3)^16 * (1-x^4)^84 * (1-x^5)^480 * (1-x^6)^2792 * (1-x^7)^16807 * (1-x^8)^102900 * ... * (1-x^n)^A373277(n) * ... ).
RELATED SERIES.
A(x)^7 = x^7 + 7*x^8 + 49*x^9 + 343*x^10 + 2401*x^11 + 16807*x^12 + 117649*x^13 + 823544*x^14 + 5764808*x^15 + ...
-
{a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^7)/(1 - 7*x +x*O(x^n)))^(1/7)); polcoeff(A, n)}
for(n=1, 50, print1(a(n), ", "))
-
/* EULER transform of A373277 */
{A373277(n) = 1/(7*n) * sumdiv(n, d, (gcd(d, 7)==1)*(moebius(d)*7^(n/d)))} \\ after Seiichi Manyama in A373277
{a(n) = my(A = x/prod(m=1, n, (1-x^m +x*O(x^n))^A373277(m))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
Showing 1-5 of 5 results.
Comments