A271930 G.f. A(x) satisfies: A(x) = A( x^2 + 6*x*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.
1, 3, 15, 90, 597, 4221, 31185, 237897, 1859568, 14816637, 119892942, 982565883, 8138777166, 68028775587, 573078135996, 4860507197700, 41470162208814, 355695498901179, 3065210379987489, 26525947283576640, 230425563258798840, 2008561878414115803, 17563090615911038115, 154014411705019299450, 1354142406561753259035, 11934928413519024726252, 105426063390991627937457, 933206579920813459523994, 8276480132736299734057275, 73535083052134446419214960
Offset: 1
Keywords
Examples
G..f.: A(x) = x + 3*x^2 + 15*x^3 + 90*x^4 + 597*x^5 + 4221*x^6 + 31185*x^7 + 237897*x^8 + 1859568*x^9 + 14816637*x^10 + 119892942*x^11 + 982565883*x^12 +... where A(x)^2 = A( x^2 + 6*x*A(x)^2 ). RELATED SERIES. A(x)^2 = x^2 + 6*x^3 + 39*x^4 + 270*x^5 + 1959*x^6 + 14724*x^7 + 113706*x^8 + 896994*x^9 + 7198257*x^10 + 58580766*x^11 + 482345937*x^12 + 4011023556*x^13 + 33637887441*x^14 +... Let B(x) be the series reversion of the g.f. A(x), A(B(x)) = x, then: B(x) = x - 3*x^2 + 3*x^3 - 3*x^5 + 9*x^7 - 33*x^9 + 126*x^11 - 513*x^13 + 2214*x^15 - 9876*x^17 + 45045*x^19 - 209493*x^21 +...+ A264412(n)*x^(2*n+1) +... such that B(x) = x*G(x^2) - 3*x^2 where G(x)^2 = G(x^2) + 6*x, and G(x) is the g.f. of A264412.
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..300
Programs
-
PARI
{a(n) = my(A=x,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^2 + 6*X*A^2)^(1/2) ); polcoeff(A,n)} for(n=1,30,print1(a(n),", "))
Formula
G.f. A(x) satisfies: A( x*G(x^2) - 3*x^2 ) = x, where G(x)^2 = G(x^2) + 6*x, and G(x) is the g.f. of A264412.
a(n) ~ c * d^n / n^(3/2), where d = 9.35010183959428615991060685319... and c = 0.0902227396498060205291555743... . - Vaclav Kotesovec, Apr 18 2016
Comments