A264412
G.f. A(x) satisfies: A(x)^2 = A(x^2) + 6*x.
Original entry on oeis.org
1, 3, -3, 9, -33, 126, -513, 2214, -9876, 45045, -209493, 990198, -4741191, 22946247, -112079214, 551793303, -2735330190, 13641353118, -68394016548, 344539469889, -1743035351958, 8851923849123, -45110440515753, 230615809867476, -1182376529280117, 6078184963674498, -31322206517658453, 161774639164275552, -837290923919381322
Offset: 0
G.f.: A(x) = 1 + 3*x - 3*x^2 + 9*x^3 - 33*x^4 + 126*x^5 - 513*x^6 + 2214*x^7 - 9876*x^8 + 45045*x^9 +...
where
A(x)^2 = 1 + 6*x + 3*x^2 - 3*x^4 + 9*x^6 - 33*x^8 + 126*x^10 - 513*x^12 + 2214*x^14 - 9876*x^16 + 45045*x^18 +...
so that A(x)^2 = A(x^2) + 6*x.
Let G(x) = Series_Reversion( x / (A(x^2) + 2*x) ), then
G(x) = x + 2*x^2 + 7*x^3 + 26*x^4 + 103*x^5 + 422*x^6 + 1774*x^7 + 7604*x^8 + 33109*x^9 + 146042*x^10 +...+ A264224(n)*x^n +...
such that G(x)^2 = G( x^2/(1-4*x) ) and A(G(x))^2 = (1+4*x) * G(x)/x.
-
{a(n) = my(A=1); for(i=1,n, A = sqrt( subst(A,x,x^2) + 6*x +x*O(x^n))); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A271935
G.f. A(x) satisfies: A(x) = A( x^2 + 8*x*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.
Original entry on oeis.org
1, 4, 26, 200, 1691, 15204, 142710, 1382568, 13721765, 138802136, 1425785270, 14832383488, 155947271878, 1654494195340, 17690004381000, 190426309700616, 2062071992480208, 22447191471665160, 245501068961175090, 2696300196714320520, 29725402250477117175, 328835072363241763920
Offset: 1
G..f.: A(x) = x + 4*x^2 + 26*x^3 + 200*x^4 + 1691*x^5 + 15204*x^6 + 142710*x^7 + 1382568*x^8 + 13721765*x^9 + 138802136*x^10 + 1425785270*x^11 + ...
where A(x)^2 = A( x^2 + 8*x*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 8*x^3 + 68*x^4 + 608*x^5 + 5658*x^6 + 54336*x^7 + 534984*x^8 + 5373824*x^9 + 54866075*x^10 + 567775856*x^11 + 5942353444*x^12 + ...
Let B(x) be the series reversion of the g.f. A(x), A(B(x)) = x, then:
B(x) = x - 4*x^2 + 6*x^3 - 15*x^5 + 90*x^7 - 660*x^9 + 5310*x^11 - 45765*x^13 + 413640*x^15 - 3864345*x^17 + 37014120*x^19 + ... + A264413(n)*x^(2*n+1) + ...
such that B(x) = x*G(x^2) - 4*x^2 where G(x)^2 = G(x^2) + 12*x, and G(x) is the g.f. of A264413.
From _Paul D. Hanna_, May 20 2024: (Start)
The series (A(x)/x)^(1/4) seems to consist solely of integer coefficients
(A(x)/x)^(1/4) = 1 + x + 5*x^2 + 34*x^3 + 268*x^4 + 2305*x^5 + 20988*x^6 + 198891*x^7 + 1941111*x^8 + 19377707*x^9 + 196936775*x^10 + ...
and continues to be integral for at least the initial 400 coefficients. (End)
-
{a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^2 + 8*X*A^2)^(1/2) ); polcoeff(A,n)}
for(n=1,30,print1(a(n),", "))
A271957
G.f. A(x) satisfies: A(x) = A( x^2 + 10*x*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.
Original entry on oeis.org
1, 5, 40, 375, 3845, 41825, 474450, 5552250, 66548785, 812875800, 10082125950, 126637168125, 1607562407775, 20591392666250, 265810034489750, 3454516382881875, 45162288467005155, 593528625987396725, 7836767285955169200, 103908861022437312375, 1382961699685548183750, 18469547560714428659250, 247433242662040209056250, 3324296142183357299203125, 44779542961314348791789400, 604655933814703316140014375
Offset: 1
G..f.: A(x) = x + 5*x^2 + 40*x^3 + 375*x^4 + 3845*x^5 + 41825*x^6 + 474450*x^7 + 5552250*x^8 + 66548785*x^9 + 812875800*x^10 + 10082125950*x^11 + 126637168125*x^12 +...
where A(x)^2 = A( x^2 + 10*x*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 10*x^3 + 105*x^4 + 1150*x^5 + 13040*x^6 + 152100*x^7 + 1815375*x^8 + 22078750*x^9 + 272728845*x^10 + 3412891200*x^11 + 43178951325*x^12 +...
Let B(x) be the series reversion of the g.f. A(x), A(B(x)) = x, then:
B(x) = x - 5*x^2 + 10*x^3 - 45*x^5 + 450*x^7 - 5535*x^9 + 75600*x^11 - 1106100*x^13 + 16953750*x^15 +...+ A264414(n)*x^(2*n+1) +...
such that B(x) = x*G(x^2) - 5*x^2 where G(x)^2 = G(x^2) + 20*x, and G(x) is the g.f. of A264414.
-
{a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^2 + 10*X*A^2)^(1/2) ); polcoeff(A,n)}
for(n=1,30,print1(a(n),", "))
Showing 1-3 of 3 results.
Comments