cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A264414 G.f. A(x) satisfies: A(x)^2 = A(x^2) + 20*x.

Original entry on oeis.org

1, 10, -45, 450, -5535, 75600, -1106100, 16953750, -268652880, 4365638550, -72354858300, 1218356280000, -20784495119850, 358457180010750, -6239532583193625, 109476057598087500, -1934128026918961515, 34378012275668994150, -614328464414815220025, 11030366153872043358750, -198899407327466712808800, 3600377821710426377668500
Offset: 0

Views

Author

Paul D. Hanna, Nov 12 2015

Keywords

Examples

			G.f.: A(x) = 1 + 10*x - 45*x^2 + 450*x^3 - 5535*x^4 + 75600*x^5 - 1106100*x^6 +...
where
A(x)^2 = 1 + 20*x + 10*x^2 - 45*x^4 + 450*x^6 - 5535*x^8 + 75600*x^10 - 1106100*x^12 +...
so that A(x)^2 = A(x^2) + 20*x.
Let G(x) = Series_Reversion( x / (A(x^2) + 4*x) ), then
G(x) = x + 4*x^2 + 28*x^3 + 208*x^4 + 1702*x^5 + 14584*x^6 + 129808*x^7 + 1187008*x^8 + 11089153*x^9 + 105370660*x^10 +...+ A264226(n)*x^n +...
such that G(x)^2 = G( x^2/(1-8*x) ).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1,n, A = sqrt( subst(A,x,x^2) + 20*x +x*O(x^n))); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

Given g.f. A(x), let G(x) denote the g.f. of A264226, then:
(1) G( x/(A(x)^2 - 16*x) ) = x,
(2) G( x/(A(x^2) + 4*x) ) = x,
(3) A(G(x))^2 = (1+16*x) * G(x)/x,
(4) A(G(x)^2) = (1-4*x) * G(x)/x,
where G(x)^2 = G( x^2/(1-8*x) ).

A271930 G.f. A(x) satisfies: A(x) = A( x^2 + 6*x*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 3, 15, 90, 597, 4221, 31185, 237897, 1859568, 14816637, 119892942, 982565883, 8138777166, 68028775587, 573078135996, 4860507197700, 41470162208814, 355695498901179, 3065210379987489, 26525947283576640, 230425563258798840, 2008561878414115803, 17563090615911038115, 154014411705019299450, 1354142406561753259035, 11934928413519024726252, 105426063390991627937457, 933206579920813459523994, 8276480132736299734057275, 73535083052134446419214960
Offset: 1

Views

Author

Paul D. Hanna, Apr 16 2016

Keywords

Comments

Compare the g.f. to the following related identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2), where C(x) = x + C(x)^2 (A000108).
(2) F(x) = F( x^2 + 4*x*F(x)^2 )^(1/2), where F(x) = D(x)^2/x and D(x) = x + D(x)^3/x (A001764).

Examples

			G..f.: A(x) = x + 3*x^2 + 15*x^3 + 90*x^4 + 597*x^5 + 4221*x^6 + 31185*x^7 + 237897*x^8 + 1859568*x^9 + 14816637*x^10 + 119892942*x^11 + 982565883*x^12 +...
where A(x)^2 = A( x^2 + 6*x*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 6*x^3 + 39*x^4 + 270*x^5 + 1959*x^6 + 14724*x^7 + 113706*x^8 + 896994*x^9 + 7198257*x^10 + 58580766*x^11 + 482345937*x^12 + 4011023556*x^13 + 33637887441*x^14 +...
Let B(x) be the series reversion of the g.f. A(x), A(B(x)) = x, then:
B(x) = x - 3*x^2 + 3*x^3 - 3*x^5 + 9*x^7 - 33*x^9 + 126*x^11 - 513*x^13 + 2214*x^15 - 9876*x^17 + 45045*x^19 - 209493*x^21 +...+ A264412(n)*x^(2*n+1) +...
such that B(x) = x*G(x^2) - 3*x^2 where G(x)^2 = G(x^2) + 6*x, and G(x) is the g.f. of A264412.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^2 + 6*X*A^2)^(1/2) ); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies: A( x*G(x^2) - 3*x^2 ) = x, where G(x)^2 = G(x^2) + 6*x, and G(x) is the g.f. of A264412.
a(n) ~ c * d^n / n^(3/2), where d = 9.35010183959428615991060685319... and c = 0.0902227396498060205291555743... . - Vaclav Kotesovec, Apr 18 2016

A271935 G.f. A(x) satisfies: A(x) = A( x^2 + 8*x*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 4, 26, 200, 1691, 15204, 142710, 1382568, 13721765, 138802136, 1425785270, 14832383488, 155947271878, 1654494195340, 17690004381000, 190426309700616, 2062071992480208, 22447191471665160, 245501068961175090, 2696300196714320520, 29725402250477117175, 328835072363241763920
Offset: 1

Views

Author

Paul D. Hanna, Apr 16 2016

Keywords

Comments

Compare the g.f. to the following related identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2), where C(x) = x + C(x)^2 (A000108).
(2) F(x) = F( x^2 + 4*x*F(x)^2 )^(1/2), where F(x) = D(x)^2/x and D(x) = x + D(x)^3/x (A001764).

Examples

			G..f.: A(x) = x + 4*x^2 + 26*x^3 + 200*x^4 + 1691*x^5 + 15204*x^6 + 142710*x^7 + 1382568*x^8 + 13721765*x^9 + 138802136*x^10 + 1425785270*x^11 + ...
where A(x)^2 = A( x^2 + 8*x*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 8*x^3 + 68*x^4 + 608*x^5 + 5658*x^6 + 54336*x^7 + 534984*x^8 + 5373824*x^9 + 54866075*x^10 + 567775856*x^11 + 5942353444*x^12 + ...
Let B(x) be the series reversion of the g.f. A(x), A(B(x)) = x, then:
B(x) = x - 4*x^2 + 6*x^3 - 15*x^5 + 90*x^7 - 660*x^9 + 5310*x^11 - 45765*x^13 + 413640*x^15 - 3864345*x^17 + 37014120*x^19 + ... + A264413(n)*x^(2*n+1) + ...
such that B(x) = x*G(x^2) - 4*x^2 where G(x)^2 = G(x^2) + 12*x, and G(x) is the g.f. of A264413.
From _Paul D. Hanna_, May 20 2024: (Start)
The series (A(x)/x)^(1/4) seems to consist solely of integer coefficients
(A(x)/x)^(1/4) = 1 + x + 5*x^2 + 34*x^3 + 268*x^4 + 2305*x^5 + 20988*x^6 + 198891*x^7 + 1941111*x^8 + 19377707*x^9 + 196936775*x^10 + ...
and continues to be integral for at least the initial 400 coefficients. (End)
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^2 + 8*X*A^2)^(1/2) ); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies: A( x*G(x^2) - 4*x^2 ) = x, where G(x)^2 = G(x^2) + 12*x, and G(x) is the g.f. of A264413.
Showing 1-3 of 3 results.