cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271931 G.f. A(x) satisfies: A(x) = A( x^5 + 5*x*A(x)^5 )^(1/5), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 1, 3, 11, 44, 185, 803, 3564, 16082, 73502, 339391, 1580318, 7410356, 34956846, 165756814, 789543189, 3775883483, 18122280953, 87257629998, 421366007784, 2040186607333, 9902368905093, 48170863713973, 234819266573684, 1146894750998644, 5611743950271715, 27504683191546135
Offset: 1

Views

Author

Paul D. Hanna, Apr 16 2016

Keywords

Comments

Compare the g.f. to the following identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2),
(2) C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
More generally, for prime p there exists an integer series G(x) that satisfies: G(x) = G( x^p + p*x*G(x)^p )^(1/p) with G(0)=0, G'(0)=1 (conjecture).

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 11*x^4 + 44*x^5 + 185*x^6 + 803*x^7 + 3564*x^8 + 16082*x^9 + 73502*x^10 + 339391*x^11 + 1580318*x^12 + ...
where A(x)^5 = A( x^5 + 5*x*A(x)^5 ).
RELATED SERIES.
A(x)^5 = x^5 + 5*x^6 + 25*x^7 + 125*x^8 + 625*x^9 + 3126*x^10 + 15640*x^11 + 78275*x^12 + 391875*x^13 + 1962500*x^14 + 9831253*x^15 + 49265695*x^16 + ...
Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then R(x) begins
R(x) = x - x^2 - x^3 - x^4 + 4*x^6 + 15*x^7 + 36*x^8 + 55*x^9 - 359*x^11 - 1520*x^12 - 4028*x^13 - 6667*x^14 + 49062*x^16 + 217645*x^17 + ...
The 4 quintisections of R(x) = Q1(x) + Q2(x) + Q3(x) + Q4(x) (with the fifth being zero) are as follows
Q1(x) = x + 4*x^6 - 359*x^11 + 49062*x^16 - 8013396*x^21 + 1442958557*x^26 - 276352605126*x^31 + 55224710824185*x^36 - 11384289478228711*x^41 + ...
Q2(x) = -x^2 + 15*x^7 - 1520*x^12 + 217645*x^17 - 36405005*x^22 + 6650838668*x^27 - 1286179025729*x^32 + 258819346825534*x^37 + ...
Q3(x) = -x^3 + 36*x^8 - 4028*x^13 + 600254*x^18 - 102567034*x^23 + 18988120493*x^28 - 3705388523045*x^33 + 750546817970646*x^38 + ...
Q4(x) = -x^4 + 55*x^9 - 6667*x^14 + 1028514*x^19 - 179152944*x^24 + 33573744984*x^29 - 6607215559460*x^34 + 1346634048063165*x^39 + ...
where Q1*Q4 = -Q2*Q3 where
Q2*Q3 = x^5 - 51*x^10 + 6088*x^15 - 933039*x^20 + 161933629*x^25 - 30277104991*x^30 + 5949003081867*x^35 - 1211076410858363*x^40 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^5 + 5*X*A^5)^(1/5) ); polcoeff(A,n)}
    for(n=1,40,print1(a(n),", "))