A271930
G.f. A(x) satisfies: A(x) = A( x^2 + 6*x*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.
Original entry on oeis.org
1, 3, 15, 90, 597, 4221, 31185, 237897, 1859568, 14816637, 119892942, 982565883, 8138777166, 68028775587, 573078135996, 4860507197700, 41470162208814, 355695498901179, 3065210379987489, 26525947283576640, 230425563258798840, 2008561878414115803, 17563090615911038115, 154014411705019299450, 1354142406561753259035, 11934928413519024726252, 105426063390991627937457, 933206579920813459523994, 8276480132736299734057275, 73535083052134446419214960
Offset: 1
G..f.: A(x) = x + 3*x^2 + 15*x^3 + 90*x^4 + 597*x^5 + 4221*x^6 + 31185*x^7 + 237897*x^8 + 1859568*x^9 + 14816637*x^10 + 119892942*x^11 + 982565883*x^12 +...
where A(x)^2 = A( x^2 + 6*x*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 6*x^3 + 39*x^4 + 270*x^5 + 1959*x^6 + 14724*x^7 + 113706*x^8 + 896994*x^9 + 7198257*x^10 + 58580766*x^11 + 482345937*x^12 + 4011023556*x^13 + 33637887441*x^14 +...
Let B(x) be the series reversion of the g.f. A(x), A(B(x)) = x, then:
B(x) = x - 3*x^2 + 3*x^3 - 3*x^5 + 9*x^7 - 33*x^9 + 126*x^11 - 513*x^13 + 2214*x^15 - 9876*x^17 + 45045*x^19 - 209493*x^21 +...+ A264412(n)*x^(2*n+1) +...
such that B(x) = x*G(x^2) - 3*x^2 where G(x)^2 = G(x^2) + 6*x, and G(x) is the g.f. of A264412.
-
{a(n) = my(A=x,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^2 + 6*X*A^2)^(1/2) ); polcoeff(A,n)}
for(n=1,30,print1(a(n),", "))
A271932
G.f. A(x) satisfies: A(x) = A( x^7 + 7*x*A(x)^7 )^(1/7), with A(0)=0, A'(0)=1.
Original entry on oeis.org
1, 1, 4, 20, 110, 638, 3828, 23515, 146970, 930820, 5957325, 38452405, 249944939, 1634287025, 10739831400, 70884562683, 469622328252, 3121694320866, 20811920304961, 139115729296575, 932107335003790, 6258662787526655, 42105353650697301, 283765005631661148, 1915495724241980280, 12949332513585521217, 87661142189041380207, 594176943178375193748, 4032121696383579351905, 27392082325012470506385, 186276500908841717917320
Offset: 1
G.f.: A(x) = x + x^2 + 4*x^3 + 20*x^4 + 110*x^5 + 638*x^6 + 3828*x^7 + 23515*x^8 + 146970*x^9 + 930820*x^10 + 5957325*x^11 + 38452405*x^12 +...
where A(x)^7 = A( x^7 + 7*x*A(x)^7 ).
RELATED SERIES.
A(x)^7 = x^7 + 7*x^8 + 49*x^9 + 343*x^10 + 2401*x^11 + 16807*x^12 + 117649*x^13 + 823544*x^14 + 5764822*x^15 + 40353901*x^16 + 282478679*x^17 + 1977362758*x^18 + 13841640148*x^19 + 96892304579*x^20 + 678252720401*x^21 +...
-
{a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^7 + 7*X*A^7)^(1/7) ); polcoeff(A,n)}
for(n=1,40,print1(a(n),", "))
A271933
G.f. A(x) satisfies: A(x) = A( x^11 + 11*x*A(x)^11 )^(1/11), with A(0)=0, A'(0)=1.
Original entry on oeis.org
1, 1, 6, 46, 391, 3519, 32844, 314364, 3065049, 30309929, 303099290, 3058547381, 31095231708, 318128139796, 3272175152355, 33812476576290, 350804444501589, 3652493334187197, 38148263715573364, 399552867370295155, 4195305107766973240, 44150591852677070280, 465588059585378099226, 4919039064854516328821, 52059830109088065802395, 551834199223958450647359, 5857932269440676202573084
Offset: 1
G.f.: A(x) = x + x^2 + 6*x^3 + 46*x^4 + 391*x^5 + 3519*x^6 + 32844*x^7 + 314364*x^8 + 3065049*x^9 + 30309929*x^10 + 303099290*x^11 + 3058547381*x^12 +...
where A(x)^11 = A( x^11 + 11*x*A(x)^11 ).
RELATED SERIES.
A(x)^11 = x^11 + 11*x^12 + 121*x^13 + 1331*x^14 + 14641*x^15 + 161051*x^16 + 1771561*x^17 + 19487171*x^18 + 214358881*x^19 + 2357947691*x^20 + 25937424601*x^21 + 285311670612*x^22 + 3138428376754*x^23 + 34522712144657*x^24 +...
-
{a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^11 + 11*X*A^11)^(1/11) ); polcoeff(A,n)}
for(n=1,40,print1(a(n),", "))
A271934
G.f. A(x) satisfies: A(x) = A( x^3 + 6*x*A(x)^3 )^(1/3), with A(0)=0, A'(0)=1.
Original entry on oeis.org
1, 2, 8, 38, 196, 1064, 5988, 34632, 204672, 1231082, 7514052, 46433088, 289976404, 1827459072, 11608240000, 74249294704, 477826080368, 3091718252320, 20101537759256, 131262924427560, 860504352317040, 5661120688863216, 37363827222888640, 247331149667685440, 1641642515512685408, 10923380539408947456, 72850297774044995328, 486886413558080754198, 3260469757311730139044, 21874082006618739609864
Offset: 1
G.f.: A(x) = x + 2*x^2 + 8*x^3 + 38*x^4 + 196*x^5 + 1064*x^6 + 5988*x^7 + 34632*x^8 + 204672*x^9 + 1231082*x^10 + 7514052*x^11 + 46433088*x^12 +...
where A(x)^3 = A( x^3 + 6*x*A(x)^3 ).
RELATED SERIES.
A(x)^3 = x^3 + 6*x^4 + 36*x^5 + 218*x^6 + 1332*x^7 + 8208*x^8 + 50984*x^9 + 319056*x^10 + 2010528*x^11 + 12750950*x^12 + 81348948*x^13 + 521839944*x^14 + 3364421812*x^15 + 21791976192*x^16 +...
Series reversion of A(x) equals B(x) - 2*x^3/B(x) where
B(x) = x + 2*x^4 - 20*x^7 + 302*x^10 - 5436*x^13 + 108072*x^16 - 2286160*x^19 + 50475256*x^22 - 1149822240*x^25 + 26825146770*x^28 - 637700980612*x^31 + 15391872726072*x^34 - 376193675011356*x^37 + 9291840570002312*x^40 +...
-
{a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^3 + 6*X*A^3)^(1/3) ); polcoeff(A,n)}
for(n=1,30,print1(a(n),", "))
A271935
G.f. A(x) satisfies: A(x) = A( x^2 + 8*x*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.
Original entry on oeis.org
1, 4, 26, 200, 1691, 15204, 142710, 1382568, 13721765, 138802136, 1425785270, 14832383488, 155947271878, 1654494195340, 17690004381000, 190426309700616, 2062071992480208, 22447191471665160, 245501068961175090, 2696300196714320520, 29725402250477117175, 328835072363241763920
Offset: 1
G..f.: A(x) = x + 4*x^2 + 26*x^3 + 200*x^4 + 1691*x^5 + 15204*x^6 + 142710*x^7 + 1382568*x^8 + 13721765*x^9 + 138802136*x^10 + 1425785270*x^11 + ...
where A(x)^2 = A( x^2 + 8*x*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 8*x^3 + 68*x^4 + 608*x^5 + 5658*x^6 + 54336*x^7 + 534984*x^8 + 5373824*x^9 + 54866075*x^10 + 567775856*x^11 + 5942353444*x^12 + ...
Let B(x) be the series reversion of the g.f. A(x), A(B(x)) = x, then:
B(x) = x - 4*x^2 + 6*x^3 - 15*x^5 + 90*x^7 - 660*x^9 + 5310*x^11 - 45765*x^13 + 413640*x^15 - 3864345*x^17 + 37014120*x^19 + ... + A264413(n)*x^(2*n+1) + ...
such that B(x) = x*G(x^2) - 4*x^2 where G(x)^2 = G(x^2) + 12*x, and G(x) is the g.f. of A264413.
From _Paul D. Hanna_, May 20 2024: (Start)
The series (A(x)/x)^(1/4) seems to consist solely of integer coefficients
(A(x)/x)^(1/4) = 1 + x + 5*x^2 + 34*x^3 + 268*x^4 + 2305*x^5 + 20988*x^6 + 198891*x^7 + 1941111*x^8 + 19377707*x^9 + 196936775*x^10 + ...
and continues to be integral for at least the initial 400 coefficients. (End)
-
{a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^2 + 8*X*A^2)^(1/2) ); polcoeff(A,n)}
for(n=1,30,print1(a(n),", "))
A271957
G.f. A(x) satisfies: A(x) = A( x^2 + 10*x*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.
Original entry on oeis.org
1, 5, 40, 375, 3845, 41825, 474450, 5552250, 66548785, 812875800, 10082125950, 126637168125, 1607562407775, 20591392666250, 265810034489750, 3454516382881875, 45162288467005155, 593528625987396725, 7836767285955169200, 103908861022437312375, 1382961699685548183750, 18469547560714428659250, 247433242662040209056250, 3324296142183357299203125, 44779542961314348791789400, 604655933814703316140014375
Offset: 1
G..f.: A(x) = x + 5*x^2 + 40*x^3 + 375*x^4 + 3845*x^5 + 41825*x^6 + 474450*x^7 + 5552250*x^8 + 66548785*x^9 + 812875800*x^10 + 10082125950*x^11 + 126637168125*x^12 +...
where A(x)^2 = A( x^2 + 10*x*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 10*x^3 + 105*x^4 + 1150*x^5 + 13040*x^6 + 152100*x^7 + 1815375*x^8 + 22078750*x^9 + 272728845*x^10 + 3412891200*x^11 + 43178951325*x^12 +...
Let B(x) be the series reversion of the g.f. A(x), A(B(x)) = x, then:
B(x) = x - 5*x^2 + 10*x^3 - 45*x^5 + 450*x^7 - 5535*x^9 + 75600*x^11 - 1106100*x^13 + 16953750*x^15 +...+ A264414(n)*x^(2*n+1) +...
such that B(x) = x*G(x^2) - 5*x^2 where G(x)^2 = G(x^2) + 20*x, and G(x) is the g.f. of A264414.
-
{a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^2 + 10*X*A^2)^(1/2) ); polcoeff(A,n)}
for(n=1,30,print1(a(n),", "))
A370545
Expansion of g.f. A(x) satisfying A(x) = A( x^5 + 5*A(x)^6 )^(1/5).
Original entry on oeis.org
1, 1, 4, 21, 125, 801, 5388, 37518, 268109, 1955000, 14487754, 108794169, 826054062, 6331064385, 48914088750, 380555960864, 2978892961194, 23444095375593, 185394136871818, 1472396312841250, 11739089289817538, 93921736129064325, 753845680317416682, 6068255413854119432
Offset: 1
G.f.: A(x) = x + x^2 + 4*x^3 + 21*x^4 + 125*x^5 + 801*x^6 + 5388*x^7 + 37518*x^8 + 268109*x^9 + 1955000*x^10 + 14487754*x^11 + 108794169*x^12 + ...
where A(x)^5 = A( x^5 + 5*A(x)^6 ).
RELATED SERIES.
A(x)^5 = x^5 + 5*x^6 + 30*x^7 + 195*x^8 + 1330*x^9 + 9376*x^10 + 67720*x^11 + ...
A(x)^6 = x^6 + 6*x^7 + 39*x^8 + 266*x^9 + 1875*x^10 + 13542*x^11 + 99654*x^12 + ...
Let B(x) be the series reversion of A(x), A(B(x)) = x, which begins
B(x) = x - x^2 - 2*x^3 - 6*x^4 - 21*x^5 - 80*x^6 - 320*x^7 - 1326*x^8 - 5637*x^9 - 24434*x^10 - ... + (-1)^(n-1)*A352703(n-1)*x^n + ...
then B(x)^5 + 5*x^6 = B(x^5).
Let C(x) = x^2/B(x) = x + x^2 + 3*x^3 + 11*x^4 + 44*x^5 + 185*x^6 + 802*x^7 + 3553*x^8 + 15994*x^9 + 72886*x^10 + ... + A091200(n-1)*x^n + ...
where A(x^2/C(x)) = x and C(A(x)) = A(x)^2/x,
then C(x)^5 = C(x^5)/(1 - 5*C(x^5)/x^4).
-
{a(n) = my(A=x+x^2); for(m=1, n, A=truncate(A); A = subst(A, x, x^5 + 5*A^6 +x^5*O(x^m))^(1/5) ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
A356780
Coefficients in the odd function A(x) such that: A(x) = A( x^2 + 2*x^2*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.
Original entry on oeis.org
1, 1, 2, 6, 21, 78, 303, 1223, 5085, 21623, 93585, 410894, 1825682, 8193544, 37087449, 169114547, 776110247, 3581944258, 16614576945, 77410877233, 362126147797, 1700179143293, 8008689767674, 37838553977426, 179268540549758, 851478474635404, 4053760582437106
Offset: 1
G.f. A(x) = x + x^3 + 2*x^5 + 6*x^7 + 21*x^9 + 78*x^11 + 303*x^13 + 1223*x^15 + 5085*x^17 + 21623*x^19 + 93585*x^21 + ...
where A(x)^2 = A( x^2 + 2*x^2*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^4 + 5*x^6 + 16*x^8 + 58*x^10 + 222*x^12 + 882*x^14 + 3616*x^16 + 15205*x^18 + 65220*x^20 + ...
x^2 + 2*x^2*A(x)^2 = x^2 + 2*x^4 + 4*x^6 + 10*x^8 + 32*x^10 + 116*x^12 + 444*x^14 + 1764*x^16 + 7232*x^18 + 30410*x^20 + ...
Let G(x) = Series_Reversion( A(x) ) then
G(x) = x - x^3 + x^5 - 2*x^7 + 4*x^9 - 7*x^11 + 12*x^13 - 23*x^15 + 45*x^17 - 84*x^19 + 157*x^21 - 302*x^23 + 584*x^25 - 1121*x^27 + ...
where G(x)^2 = G(x^2)/(1 + 2*x^2) and G(A(x)) = x.
-
{a(n) = my(A=x+x^3, X=x+x*O(x^(2*n))); for(i=1, 2*n, A = subst(A, x, x^2 + 2*X^2*A^2)^(1/2) ); polcoeff(A, 2*n-1)}
for(n=1, 30, print1(a(n), ", "))
Showing 1-8 of 8 results.
Comments