cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A271930 G.f. A(x) satisfies: A(x) = A( x^2 + 6*x*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 3, 15, 90, 597, 4221, 31185, 237897, 1859568, 14816637, 119892942, 982565883, 8138777166, 68028775587, 573078135996, 4860507197700, 41470162208814, 355695498901179, 3065210379987489, 26525947283576640, 230425563258798840, 2008561878414115803, 17563090615911038115, 154014411705019299450, 1354142406561753259035, 11934928413519024726252, 105426063390991627937457, 933206579920813459523994, 8276480132736299734057275, 73535083052134446419214960
Offset: 1

Views

Author

Paul D. Hanna, Apr 16 2016

Keywords

Comments

Compare the g.f. to the following related identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2), where C(x) = x + C(x)^2 (A000108).
(2) F(x) = F( x^2 + 4*x*F(x)^2 )^(1/2), where F(x) = D(x)^2/x and D(x) = x + D(x)^3/x (A001764).

Examples

			G..f.: A(x) = x + 3*x^2 + 15*x^3 + 90*x^4 + 597*x^5 + 4221*x^6 + 31185*x^7 + 237897*x^8 + 1859568*x^9 + 14816637*x^10 + 119892942*x^11 + 982565883*x^12 +...
where A(x)^2 = A( x^2 + 6*x*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 6*x^3 + 39*x^4 + 270*x^5 + 1959*x^6 + 14724*x^7 + 113706*x^8 + 896994*x^9 + 7198257*x^10 + 58580766*x^11 + 482345937*x^12 + 4011023556*x^13 + 33637887441*x^14 +...
Let B(x) be the series reversion of the g.f. A(x), A(B(x)) = x, then:
B(x) = x - 3*x^2 + 3*x^3 - 3*x^5 + 9*x^7 - 33*x^9 + 126*x^11 - 513*x^13 + 2214*x^15 - 9876*x^17 + 45045*x^19 - 209493*x^21 +...+ A264412(n)*x^(2*n+1) +...
such that B(x) = x*G(x^2) - 3*x^2 where G(x)^2 = G(x^2) + 6*x, and G(x) is the g.f. of A264412.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^2 + 6*X*A^2)^(1/2) ); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies: A( x*G(x^2) - 3*x^2 ) = x, where G(x)^2 = G(x^2) + 6*x, and G(x) is the g.f. of A264412.
a(n) ~ c * d^n / n^(3/2), where d = 9.35010183959428615991060685319... and c = 0.0902227396498060205291555743... . - Vaclav Kotesovec, Apr 18 2016

A271935 G.f. A(x) satisfies: A(x) = A( x^2 + 8*x*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 4, 26, 200, 1691, 15204, 142710, 1382568, 13721765, 138802136, 1425785270, 14832383488, 155947271878, 1654494195340, 17690004381000, 190426309700616, 2062071992480208, 22447191471665160, 245501068961175090, 2696300196714320520, 29725402250477117175, 328835072363241763920
Offset: 1

Views

Author

Paul D. Hanna, Apr 16 2016

Keywords

Comments

Compare the g.f. to the following related identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2), where C(x) = x + C(x)^2 (A000108).
(2) F(x) = F( x^2 + 4*x*F(x)^2 )^(1/2), where F(x) = D(x)^2/x and D(x) = x + D(x)^3/x (A001764).

Examples

			G..f.: A(x) = x + 4*x^2 + 26*x^3 + 200*x^4 + 1691*x^5 + 15204*x^6 + 142710*x^7 + 1382568*x^8 + 13721765*x^9 + 138802136*x^10 + 1425785270*x^11 + ...
where A(x)^2 = A( x^2 + 8*x*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 8*x^3 + 68*x^4 + 608*x^5 + 5658*x^6 + 54336*x^7 + 534984*x^8 + 5373824*x^9 + 54866075*x^10 + 567775856*x^11 + 5942353444*x^12 + ...
Let B(x) be the series reversion of the g.f. A(x), A(B(x)) = x, then:
B(x) = x - 4*x^2 + 6*x^3 - 15*x^5 + 90*x^7 - 660*x^9 + 5310*x^11 - 45765*x^13 + 413640*x^15 - 3864345*x^17 + 37014120*x^19 + ... + A264413(n)*x^(2*n+1) + ...
such that B(x) = x*G(x^2) - 4*x^2 where G(x)^2 = G(x^2) + 12*x, and G(x) is the g.f. of A264413.
From _Paul D. Hanna_, May 20 2024: (Start)
The series (A(x)/x)^(1/4) seems to consist solely of integer coefficients
(A(x)/x)^(1/4) = 1 + x + 5*x^2 + 34*x^3 + 268*x^4 + 2305*x^5 + 20988*x^6 + 198891*x^7 + 1941111*x^8 + 19377707*x^9 + 196936775*x^10 + ...
and continues to be integral for at least the initial 400 coefficients. (End)
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^2 + 8*X*A^2)^(1/2) ); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies: A( x*G(x^2) - 4*x^2 ) = x, where G(x)^2 = G(x^2) + 12*x, and G(x) is the g.f. of A264413.

A271957 G.f. A(x) satisfies: A(x) = A( x^2 + 10*x*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 5, 40, 375, 3845, 41825, 474450, 5552250, 66548785, 812875800, 10082125950, 126637168125, 1607562407775, 20591392666250, 265810034489750, 3454516382881875, 45162288467005155, 593528625987396725, 7836767285955169200, 103908861022437312375, 1382961699685548183750, 18469547560714428659250, 247433242662040209056250, 3324296142183357299203125, 44779542961314348791789400, 604655933814703316140014375
Offset: 1

Views

Author

Paul D. Hanna, Apr 17 2016

Keywords

Comments

Compare the g.f. to the following related identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2), where C(x) = x + C(x)^2 (A000108).
(2) F(x) = F( x^2 + 4*x*F(x)^2 )^(1/2), where F(x) = D(x)^2/x and D(x) = x + D(x)^3/x (A001764).

Examples

			G..f.: A(x) = x + 5*x^2 + 40*x^3 + 375*x^4 + 3845*x^5 + 41825*x^6 + 474450*x^7 + 5552250*x^8 + 66548785*x^9 + 812875800*x^10 + 10082125950*x^11 + 126637168125*x^12 +...
where A(x)^2 = A( x^2 + 10*x*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 10*x^3 + 105*x^4 + 1150*x^5 + 13040*x^6 + 152100*x^7 + 1815375*x^8 + 22078750*x^9 + 272728845*x^10 + 3412891200*x^11 + 43178951325*x^12 +...
Let B(x) be the series reversion of the g.f. A(x), A(B(x)) = x, then:
B(x) = x - 5*x^2 + 10*x^3 - 45*x^5 + 450*x^7 - 5535*x^9 + 75600*x^11 - 1106100*x^13 + 16953750*x^15 +...+ A264414(n)*x^(2*n+1) +...
such that B(x) = x*G(x^2) - 5*x^2 where G(x)^2 = G(x^2) + 20*x, and G(x) is the g.f. of A264414.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^2 + 10*X*A^2)^(1/2) ); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies: A( x*G(x^2) - 5*x^2 ) = x, where G(x)^2 = G(x^2) + 20*x, and G(x) is the g.f. of A264414.

A377106 G.f. A(x) satisfies A(x)^3 = A( x^3 + 9*x*A(x)^3 ), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 3, 18, 127, 966, 7686, 63068, 529503, 4526262, 39262658, 344789172, 3059733222, 27400769364, 247345475628, 2248572742200, 20570124766951, 189238723449318, 1749776993081730, 16253403563598516, 151604206816149210, 1419457992097097340, 13336331712054463644, 125697697304515725840
Offset: 1

Views

Author

Paul D. Hanna, Nov 08 2024

Keywords

Comments

Compare to C(x)^3 = C( x^3 + 3*x*C(x)^3 ), where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
Conjecture: a(n) is odd iff n = 2^k for some k >= 0.

Examples

			G.f.: A(x) = x + 3*x^2 + 18*x^3 + 127*x^4 + 966*x^5 + 7686*x^6 + 63068*x^7 + 529503*x^8 + 4526262*x^9 + 39262658*x^10 + 344789172*x^11 + 3059733222*x^12 + ...
where A(x)^3 = A( x^3 + 9*x*A(x)^3 ).
RELATED SERIES.
A(x)^3 = x^3 + 9*x^4 + 81*x^5 + 732*x^6 + 6642*x^7 + 60507*x^8 + 553329*x^9 + 5079024*x^10 + 46788678*x^11 + 432520930*x^12 + ...
Series reversion of A(x) equals B(x) - 3*x^3/B(x) where
B(x) = x + 8*x^4 - 280*x^7 + 15328*x^10 - 1007576*x^13 + 73169608*x^16 - 5656895520*x^19 + 456585800584*x^22 - 38029012055320*x^25 + 3244225801946920*x^28 - 282033503420822552*x^31 + ...
so that A( B(x) - 3*x^3/B(x) ) = x.
SPECIFIC VALUES.
A(t) = 1/6 at t = 0.0913017665091460949496315519875858022728583060252844...
  where 1/216 = A( t^3 + t/24 ).
A(t) = 1/9 at t = 0.0756231400530157002966336216229658355706050775929719...
  where 1/729 = A( t^3 + t/81 ).
A(1/11) = 0.16461186433566159924255427988603576152486558542514...
A(1/12) = 0.13356888809515041673070959997705841146178687774042...
A(1/13) = 0.11450357672473104104332015691591377007745191359804...
A(1/15) = 0.09064971528132540512370615784788517775098854995359...
		

Crossrefs

Cf. A271934.

Programs

  • PARI
    {a(n) = my(A=x+3*x^2); for(m=1, n, A = truncate(A); A = subst(A, x, x^3 + 9*x*A^3 +x^4*O(x^m))^(1/3) ); polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = A( x^3 + 9*x*A(x)^3 ).
(2) A(x)^9 = A( x^9 + 27*x^7*A(x)^3 + 243*x^5*A(x)^6 + 738*x^3*A(x)^9 + 81*x*A(x)^12 ).
Showing 1-4 of 4 results.