cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A271931 G.f. A(x) satisfies: A(x) = A( x^5 + 5*x*A(x)^5 )^(1/5), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 1, 3, 11, 44, 185, 803, 3564, 16082, 73502, 339391, 1580318, 7410356, 34956846, 165756814, 789543189, 3775883483, 18122280953, 87257629998, 421366007784, 2040186607333, 9902368905093, 48170863713973, 234819266573684, 1146894750998644, 5611743950271715, 27504683191546135
Offset: 1

Views

Author

Paul D. Hanna, Apr 16 2016

Keywords

Comments

Compare the g.f. to the following identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2),
(2) C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
More generally, for prime p there exists an integer series G(x) that satisfies: G(x) = G( x^p + p*x*G(x)^p )^(1/p) with G(0)=0, G'(0)=1 (conjecture).

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 11*x^4 + 44*x^5 + 185*x^6 + 803*x^7 + 3564*x^8 + 16082*x^9 + 73502*x^10 + 339391*x^11 + 1580318*x^12 + ...
where A(x)^5 = A( x^5 + 5*x*A(x)^5 ).
RELATED SERIES.
A(x)^5 = x^5 + 5*x^6 + 25*x^7 + 125*x^8 + 625*x^9 + 3126*x^10 + 15640*x^11 + 78275*x^12 + 391875*x^13 + 1962500*x^14 + 9831253*x^15 + 49265695*x^16 + ...
Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then R(x) begins
R(x) = x - x^2 - x^3 - x^4 + 4*x^6 + 15*x^7 + 36*x^8 + 55*x^9 - 359*x^11 - 1520*x^12 - 4028*x^13 - 6667*x^14 + 49062*x^16 + 217645*x^17 + ...
The 4 quintisections of R(x) = Q1(x) + Q2(x) + Q3(x) + Q4(x) (with the fifth being zero) are as follows
Q1(x) = x + 4*x^6 - 359*x^11 + 49062*x^16 - 8013396*x^21 + 1442958557*x^26 - 276352605126*x^31 + 55224710824185*x^36 - 11384289478228711*x^41 + ...
Q2(x) = -x^2 + 15*x^7 - 1520*x^12 + 217645*x^17 - 36405005*x^22 + 6650838668*x^27 - 1286179025729*x^32 + 258819346825534*x^37 + ...
Q3(x) = -x^3 + 36*x^8 - 4028*x^13 + 600254*x^18 - 102567034*x^23 + 18988120493*x^28 - 3705388523045*x^33 + 750546817970646*x^38 + ...
Q4(x) = -x^4 + 55*x^9 - 6667*x^14 + 1028514*x^19 - 179152944*x^24 + 33573744984*x^29 - 6607215559460*x^34 + 1346634048063165*x^39 + ...
where Q1*Q4 = -Q2*Q3 where
Q2*Q3 = x^5 - 51*x^10 + 6088*x^15 - 933039*x^20 + 161933629*x^25 - 30277104991*x^30 + 5949003081867*x^35 - 1211076410858363*x^40 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^5 + 5*X*A^5)^(1/5) ); polcoeff(A,n)}
    for(n=1,40,print1(a(n),", "))

A271932 G.f. A(x) satisfies: A(x) = A( x^7 + 7*x*A(x)^7 )^(1/7), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 1, 4, 20, 110, 638, 3828, 23515, 146970, 930820, 5957325, 38452405, 249944939, 1634287025, 10739831400, 70884562683, 469622328252, 3121694320866, 20811920304961, 139115729296575, 932107335003790, 6258662787526655, 42105353650697301, 283765005631661148, 1915495724241980280, 12949332513585521217, 87661142189041380207, 594176943178375193748, 4032121696383579351905, 27392082325012470506385, 186276500908841717917320
Offset: 1

Views

Author

Paul D. Hanna, Apr 16 2016

Keywords

Comments

Compare the g.f. to the following identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2),
(2) C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
More generally, for prime p there exists an integer series G(x) that satisfies: G(x) = G( x^p + p*x*G(x)^p )^(1/p) with G(0)=0, G'(0)=1 (conjecture).

Examples

			G.f.: A(x) = x + x^2 + 4*x^3 + 20*x^4 + 110*x^5 + 638*x^6 + 3828*x^7 + 23515*x^8 + 146970*x^9 + 930820*x^10 + 5957325*x^11 + 38452405*x^12 +...
where A(x)^7 = A( x^7 + 7*x*A(x)^7 ).
RELATED SERIES.
A(x)^7 = x^7 + 7*x^8 + 49*x^9 + 343*x^10 + 2401*x^11 + 16807*x^12 + 117649*x^13 + 823544*x^14 + 5764822*x^15 + 40353901*x^16 + 282478679*x^17 + 1977362758*x^18 + 13841640148*x^19 + 96892304579*x^20 + 678252720401*x^21 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^7 + 7*X*A^7)^(1/7) ); polcoeff(A,n)}
    for(n=1,40,print1(a(n),", "))

A356780 Coefficients in the odd function A(x) such that: A(x) = A( x^2 + 2*x^2*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 1, 2, 6, 21, 78, 303, 1223, 5085, 21623, 93585, 410894, 1825682, 8193544, 37087449, 169114547, 776110247, 3581944258, 16614576945, 77410877233, 362126147797, 1700179143293, 8008689767674, 37838553977426, 179268540549758, 851478474635404, 4053760582437106
Offset: 1

Views

Author

Paul D. Hanna, Aug 27 2022

Keywords

Comments

Compare the g.f. to the following identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2),
(2) C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

Examples

			G.f. A(x) = x + x^3 + 2*x^5 + 6*x^7 + 21*x^9 + 78*x^11 + 303*x^13 + 1223*x^15 + 5085*x^17 + 21623*x^19 + 93585*x^21 + ...
where A(x)^2 = A( x^2 + 2*x^2*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^4 + 5*x^6 + 16*x^8 + 58*x^10 + 222*x^12 + 882*x^14 + 3616*x^16 + 15205*x^18 + 65220*x^20 + ...
x^2 + 2*x^2*A(x)^2 = x^2 + 2*x^4 + 4*x^6 + 10*x^8 + 32*x^10 + 116*x^12 + 444*x^14 + 1764*x^16 + 7232*x^18 + 30410*x^20 + ...
Let G(x) = Series_Reversion( A(x) ) then
G(x) = x - x^3 + x^5 - 2*x^7 + 4*x^9 - 7*x^11 + 12*x^13 - 23*x^15 + 45*x^17 - 84*x^19 + 157*x^21 - 302*x^23 + 584*x^25 - 1121*x^27 + ...
where G(x)^2 = G(x^2)/(1 + 2*x^2) and G(A(x)) = x.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x+x^3, X=x+x*O(x^(2*n))); for(i=1, 2*n, A = subst(A, x, x^2 + 2*X^2*A^2)^(1/2) ); polcoeff(A, 2*n-1)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n) * x^(2*n-1) satisfies:
(1) A(x) = sqrt( A( x^2 + 2*x^2*A(x)^2 ) ).
(2) G(x) = sqrt( G(x^2) / (1 + 2*x^2) ), where A(G(x)) = x.
Showing 1-3 of 3 results.