cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271933 G.f. A(x) satisfies: A(x) = A( x^11 + 11*x*A(x)^11 )^(1/11), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 1, 6, 46, 391, 3519, 32844, 314364, 3065049, 30309929, 303099290, 3058547381, 31095231708, 318128139796, 3272175152355, 33812476576290, 350804444501589, 3652493334187197, 38148263715573364, 399552867370295155, 4195305107766973240, 44150591852677070280, 465588059585378099226, 4919039064854516328821, 52059830109088065802395, 551834199223958450647359, 5857932269440676202573084
Offset: 1

Views

Author

Paul D. Hanna, Apr 16 2016

Keywords

Comments

Compare the g.f. to the following identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2),
(2) C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
More generally, for prime p there exists an integer series G(x) that satisfies: G(x) = G( x^p + p*x*G(x)^p )^(1/p) with G(0)=0, G'(0)=1 (conjecture).

Examples

			G.f.: A(x) = x + x^2 + 6*x^3 + 46*x^4 + 391*x^5 + 3519*x^6 + 32844*x^7 + 314364*x^8 + 3065049*x^9 + 30309929*x^10 + 303099290*x^11 + 3058547381*x^12 +...
where A(x)^11 = A( x^11 + 11*x*A(x)^11 ).
RELATED SERIES.
A(x)^11 = x^11 + 11*x^12 + 121*x^13 + 1331*x^14 + 14641*x^15 + 161051*x^16 + 1771561*x^17 + 19487171*x^18 + 214358881*x^19 + 2357947691*x^20 + 25937424601*x^21 + 285311670612*x^22 + 3138428376754*x^23 + 34522712144657*x^24 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^11 + 11*X*A^11)^(1/11) ); polcoeff(A,n)}
    for(n=1,40,print1(a(n),", "))