cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271942 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having width k (n>=2, k>=1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 16, 10, 1, 1, 9, 31, 40, 15, 1, 1, 11, 51, 105, 85, 21, 1, 1, 13, 76, 219, 295, 161, 28, 1, 1, 15, 106, 396, 771, 721, 280, 36, 1, 1, 17, 141, 650, 1681, 2331, 1582, 456, 45, 1, 1, 19, 181, 995, 3235, 6083, 6244, 3186, 705, 55, 1, 1, 21, 226, 1445, 5685, 13663, 19348, 15156, 5985, 1045, 66, 1, 1, 23, 276, 2014, 9325, 27483, 50464, 55308, 33903, 10615, 1496, 78, 1
Offset: 2

Views

Author

Emeric Deutsch, May 21 2016

Keywords

Comments

Sum of entries in row n = A082582(n).
Sum(k*T(n,k), k>=1) = A271943(n).
Connection with A145904 should be explored.

Examples

			Row 4 is 1,3,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] which, clearly, have widths 3,2,2,2,1.
Triangle starts:
                               1
                              1, 1
                            1, 3, 1
                           1, 5, 6, 1
                        1, 7, 16, 10, 1
                      1, 9, 31, 40, 15, 1
                   1, 11, 51, 105, 85, 21, 1
                1, 13, 76, 219, 295, 161, 28, 1
             1, 15, 106, 396, 771, 721, 280, 36, 1
         1, 17, 141, 650, 1681, 2331, 1582, 456, 45, 1
		

Crossrefs

Programs

  • Maple
    eq := x*z*G^2-(1-x*z-z-x*z^2)*G+x*z^2 = 0: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 23)): for n from 2 to 20 do P[n] := sort(expand(coeff(Gser, z, n))) end do: for n from 2 to 20 do seq(coeff(P[n], x, j), j = 1 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y, t) option remember; expand(`if`(n=0, (1-t),
          `if`(t<0, 0, b(n-1, y+1, 1))+`if`(t>0 or y<2, 0,
           b(n, y-1, -1))+`if`(y<1, 0, b(n-1, y, 0)*z)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=1..n-1))(b(n, 0$2)):
    seq(T(n), n=2..20);  # Alois P. Heinz, Jun 06 2016
    # Alternative, (assuming offset (0,0)):
    T := (n, k) -> simplify(hypergeom([-k, k + 3, k - n], [1, 2], 1)):
    seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Oct 18 2020
  • Mathematica
    b[n_, y_, t_] := b[n, y, t] = Expand[If[n == 0, {1 - t}, If[t < 0, 0, b[n - 1, y + 1, 1]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1]] + If[y < 1, 0, b[n - 1, y, 0]*z]]];
    T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 1, n-1}]][b[n, 0, 0] ];
    Table[T[n], {n, 2, 20}] // Flatten (* Jean-François Alcover, Jul 21 2016, after Alois P. Heinz *)
    T[n_, k_] := Sum[(Binomial[n - k - 1, j]*Binomial[n - k, j]*Binomial[2*n - k - 2*j, 2*n - 2*k])/(j + 1), {j, 0, n - k}]; Flatten[Table[T[n, k], {n, 0, 12}, {k, 0, n}]] (* , provided one bases the offset in (0, 0). Detlef Meya, Jan 07 2023 *)

Formula

G.f.: G(x,z) satisfies xzG^2-(1-xz-z-xz^2)G+xz^2=0 (z marks semiperimeter, x marks width).
T(n, k) = hypergeom([-k, k + 3, k - n], [1, 2], 1), provided one bases the offset in (0, 0). - Peter Luschny, Oct 18 2020
T(n, k) = Sum_{j=0..n - k} (binomial(n - k - 1, j)*binomial(n - k, j)*binomial(2*n - k - 2*j, 2*n - 2*k))/(j + 1), provided one bases the offset in (0, 0). - Detlef Meya, Jan 07 2023