A271957 G.f. A(x) satisfies: A(x) = A( x^2 + 10*x*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.
1, 5, 40, 375, 3845, 41825, 474450, 5552250, 66548785, 812875800, 10082125950, 126637168125, 1607562407775, 20591392666250, 265810034489750, 3454516382881875, 45162288467005155, 593528625987396725, 7836767285955169200, 103908861022437312375, 1382961699685548183750, 18469547560714428659250, 247433242662040209056250, 3324296142183357299203125, 44779542961314348791789400, 604655933814703316140014375
Offset: 1
Keywords
Examples
G..f.: A(x) = x + 5*x^2 + 40*x^3 + 375*x^4 + 3845*x^5 + 41825*x^6 + 474450*x^7 + 5552250*x^8 + 66548785*x^9 + 812875800*x^10 + 10082125950*x^11 + 126637168125*x^12 +... where A(x)^2 = A( x^2 + 10*x*A(x)^2 ). RELATED SERIES. A(x)^2 = x^2 + 10*x^3 + 105*x^4 + 1150*x^5 + 13040*x^6 + 152100*x^7 + 1815375*x^8 + 22078750*x^9 + 272728845*x^10 + 3412891200*x^11 + 43178951325*x^12 +... Let B(x) be the series reversion of the g.f. A(x), A(B(x)) = x, then: B(x) = x - 5*x^2 + 10*x^3 - 45*x^5 + 450*x^7 - 5535*x^9 + 75600*x^11 - 1106100*x^13 + 16953750*x^15 +...+ A264414(n)*x^(2*n+1) +... such that B(x) = x*G(x^2) - 5*x^2 where G(x)^2 = G(x^2) + 20*x, and G(x) is the g.f. of A264414.
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..200
Programs
-
PARI
{a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^2 + 10*X*A^2)^(1/2) ); polcoeff(A,n)} for(n=1,30,print1(a(n),", "))
Formula
G.f. A(x) satisfies: A( x*G(x^2) - 5*x^2 ) = x, where G(x)^2 = G(x^2) + 20*x, and G(x) is the g.f. of A264414.
Comments