cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271959 G.f. A(x) satisfies: A(x)^2 = A( x^2 + 2*A(x)^3 ), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 1, 3, 11, 46, 206, 968, 4706, 23475, 119473, 617911, 3238299, 17159235, 91778276, 494844531, 2686731634, 14676812392, 80608719674, 444853616294, 2465582096210, 13718412623437, 76596933043436, 429046752044241, 2410260414325754, 13576401507921773, 76660997896449976, 433862051647272420, 2460614616704514931, 13982516582761530427, 79601022639916142384
Offset: 1

Views

Author

Paul D. Hanna, Apr 18 2016

Keywords

Comments

Compare the g.f. to the related identity:
C(x)^2 = C( x^2 - 2*C(x)^3 ), where C(x) = x - C(x)^2.

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 11*x^4 + 46*x^5 + 206*x^6 + 968*x^7 + 4706*x^8 + 23475*x^9 + 119473*x^10 + 617911*x^11 + 3238299*x^12 +...
where A(x)^2 = A( x^2 + 2*A(x)^3 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 28*x^5 + 123*x^6 + 570*x^7 + 2745*x^8 + 13596*x^9 + 68818*x^10 + 354380*x^11 + 1850642*x^12 + 9777476*x^13 + 52166536*x^14 +...
A(x)^3 = x^3 + 3*x^4 + 12*x^5 + 52*x^6 + 240*x^7 + 1152*x^8 + 5694*x^9 + 28776*x^10 + 148008*x^11 + 772208*x^12 + 4076736*x^13 + 21737472*x^14 +...
Let B(x) be the series reversion of g.f. A(x), A(B(x)) = x, then
B(x) = x - x^2 - x^3 - x^4 - 2*x^5 - 3*x^6 - 6*x^7 - 11*x^8 - 23*x^9 - 46*x^10 - 98*x^11 - 207*x^12 - 451*x^13 - 983*x^14 +...+ -A001190(n)*x^(n+1) +...
such that B(x) = x - x*G(x), where G(x) = x + (1/2)*(G(x)^2 + G(x^2)).
SPECIFIC VALUES.
A(1/6) = 0.268639354433758631443638721883026384052966634356654...
where A(1/6)^2 = A( 1/36 + 2*A(1/6)^3 ).
A(1/7) = 0.185430467497916613031797200968643881842140126550450...
where A(1/7)^2 = A( 1/49 + 2*A(1/7)^3 ).
A(1/8) = 0.152603770337160474296825145654940422398214899394916...
where A(1/8)^2 = A( 1/64 + 2*A(1/8)^3 ).
A(1/10) = 0.11495842465953100301539082058016718103413837897733...
where A(1/10)^2 = A( 1/100 + 2*A(1/10)^3 ).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, X^2 + 2*A^3)^(1/2) ); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies: A(x - x*G(x)) = x, where G(x) = x + (1/2)*(G(x)^2 + G(x^2)) is the g.f. of the Wedderburn-Etherington numbers (A001190).
G.f. A(x) satisfies: A( sqrt(x*F(x)) ) = F(x), where F(x) is the g.f. of A271960 and F(x)^2 = F( (x + 2*F(x)^2)^2 ). - Paul D. Hanna, Aug 09 2024
a(n) ~ c * d^n / n^(3/2), where d = 5.99301788836820936729... and c = 0.060358293047581601577... . - Vaclav Kotesovec, May 03 2016