A271960
G.f. A(x) satisfies: A(x)^2 = A( (x + 2*A(x)^2)^2 ).
Original entry on oeis.org
1, 2, 9, 50, 312, 2086, 14613, 105864, 786627, 5962110, 45914544, 358247214, 2825957294, 22499804332, 180573770279, 1459277489372, 11864714598122, 96985441764430, 796580710229999, 6570692234061404, 54408498662798180, 452104483291381134, 3768693666865385520, 31506775300298343840, 264103426399414754616, 2219265880819182687882, 18690831189839369444283, 157746446435747834724764, 1333944139058301773582424
Offset: 1
G.f.: A(x) = x + 2*x^2 + 9*x^3 + 50*x^4 + 312*x^5 + 2086*x^6 + 14613*x^7 + 105864*x^8 + 786627*x^9 + 5962110*x^10 + 45914544*x^11 + 358247214*x^12 +...
where A(x)^2 = A( (x + 2*A(x)^2)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 22*x^4 + 136*x^5 + 905*x^6 + 6320*x^7 + 45686*x^8 + 338928*x^9 + 2565688*x^10 + 19739244*x^11 + 153893122*x^12 +...
(x + 2*A(x)^2)^2 = x^2 + 4*x^3 + 20*x^4 + 120*x^5 + 784*x^6 + 5412*x^7 + 38808*x^8 + 286200*x^9 + 2156704*x^10 + 16533088*x^11 + 128521172*x^12 +...
sqrt(x*A(x)) = x + x^2 + 4*x^3 + 21*x^4 + 127*x^5 + 832*x^6 + 5746*x^7 + 41191*x^8 + 303602*x^9 + 2286359*x^10 + 17515640*x^11 + 136074960*x^12 + 1069490964*x^13 + 8488634979*x^14 + 67943128844*x^15 + 547784144486*x^16 +...
Let B(x) be the series reversion of g.f. A(x), so that A(B(x)) = x, then
B(x) = x - 2*x^2 - x^3 - x^5 - x^7 - 2*x^9 - 3*x^11 - 6*x^13 - 11*x^15 - 23*x^17 - 46*x^19 - 98*x^21 - 207*x^23 - 451*x^25 +...+ -A001190(n)*x^(2*n+1) +...
such that B(x) = x - 2*x^2 - x*G(x^2), where G(x) = x + (1/2)*(G(x)^2 + G(x^2)).
Let C(x) = series reversion of sqrt(x*A(x)), so that C(x)*A(C(x)) = x^2, then
A(C(x)) = F(x) = x + x^2 + 3*x^3 + 11*x^4 + 46*x^5 + 206*x^6 + 968*x^7 + 4706*x^8 + 23475*x^9 + 119473*x^10 +...+ A271959(n)*x^n +...
where F(x)^2 = F( x^2 + 2*F(x)^3 ).
SPECIFIC VALUES.
A(1/9) = 0.193716899378316704135816541113258730084910624425207...
where A(1/9)^2 = A( (1/9 + 2*A(1/9)^2)^2 ).
A(1/10) = 0.14546429517891287614768130046564115776024954490631...
where A(1/10)^2 = A( (1/10 + 2*A(1/10)^2)^2 ).
A(1/11) = 0.12312262826542819891757177602341377693863412904549...
where A(1/11)^2 = A( (1/11 + 2*A(1/11)^2)^2 ).
A(1/12) = 0.10787967285688466984977060963500355819842649026285...
where A(1/12)^2 = A( (1/12 + 2*A(1/12)^2)^2 ).
-
{a(n) = my(A=x+x^2, X=x+x*O(x^n)); for(i=1, n, A = subst(A, x, (X + 2*A^2)^2 )^(1/2) ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A374566
Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2 + 2*(1+x)*A(x)^3 ).
Original entry on oeis.org
1, 1, 4, 16, 76, 381, 2010, 10955, 61265, 349472, 2025632, 11896039, 70632739, 423300099, 2557174039, 15555534859, 95202925651, 585799778042, 3621806301246, 22488577587970, 140176525844646, 876813040040057, 5501997007343589, 34625517090342459, 218489435424317825, 1382072993052136903
Offset: 1
G.f.: A(x) = x + x^2 + 4*x^3 + 16*x^4 + 76*x^5 + 381*x^6 + 2010*x^7 + 10955*x^8 + 61265*x^9 + 349472*x^10 + ...
where A(x)^2 = A( x^2 + 2*(1+x)*A(x)^3 ).
RELATED SERIES.
Let G(x) be the g.f. of the Wedderburn-Etherington numbers, then
A( x - x^3 - x*G(x) ) = x, where G(x) = x + (1/2)*(G(x)^2 + G(x^2)) begins
G(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + 46*x^9 + 98*x^10 + 207*x^11 + 451*x^12 + 983*x^13 + ... + A001190(n)*x^n + ...
A(x)^2 = x^2 + 2*x^3 + 9*x^4 + 40*x^5 + 200*x^6 + 1042*x^7 + 5646*x^8 + 31410*x^9 + 178488*x^10 + 1031346*x^11 + 6041569*x^12 + ...
A(x)^3 = x^3 + 3*x^4 + 15*x^5 + 73*x^6 + 384*x^7 + 2079*x^8 + 11584*x^9 + 65868*x^10 + 380859*x^11 + 2232199*x^12 + 13231686*x^13 + ...
x^2 + 2*(1+x)*A(x)^3 = x^2 + 2*x^3 + 8*x^4 + 36*x^5 + 176*x^6 + 914*x^7 + 4926*x^8 + 27326*x^9 + 154904*x^10 + 893454*x^11 + ...
SPECIFIC VALUES.
A(t) = 1/4 at t = 0.14894182268166520428651100246692394784806895864208130...
where 1/16 = A( t^2 + (1 + t)/32 ).
A(t) = 1/5 at t = 0.14144303881517477480553509807420585604076735607834555...
where 1/25 = A( t^2 + 2*(1 + t)/125 ).
A(1/7) = 0.204913420188897006601259679664181034021504614738141...
where A(1/7)^2 = A( 1/7^2 + (16/7)*A(1/7)^3 ).
A(1/8) = 0.159462997675623738517233384699423553894402512640906...
where A(1/8)^2 = A( 1/8^2 + (18/8)*A(1/8)^3 ).
A(1/9) = 0.134511672187656270338825814076702307725993232871545...
where A(1/9)^2 = A( 1/9^2 + (20/9)*A(1/9)^3 ).
A(1/10) = 0.117197825788422212715965141990212003609448403429416...
where A(1/10)^2 = A( 1/10^2 + (22/10)*A(1/10)^3 ).
-
{a(n) = my(A=[0,1],Ax=x); for(i=1,n, A = concat(A,0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax,x, x^2 + 2*(1+x)*Ax^3) - Ax^2,#A) );A[n+1]}
for(n=1,30, print1(a(n),", "))
A374567
Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2 + 2*x*A(x)^2 + 2*A(x)^3 ).
Original entry on oeis.org
1, 2, 9, 51, 325, 2222, 15926, 118085, 898217, 6970053, 54960439, 439112322, 3547096393, 28921270773, 237704587991, 1967321998468, 16381661824340, 137144132047520, 1153655788549216, 9746264972136632, 82656795697147384, 703459159019830315, 6005956718852682504, 51426768620398474939
Offset: 1
G.f.: A(x) = x + 2*x^2 + 9*x^3 + 51*x^4 + 325*x^5 + 2222*x^6 + 15926*x^7 + 118085*x^8 + 898217*x^9 + 6970053*x^10 + ...
where A(x)^2 = A( x^2 + 2*x*A(x)^2 + 2*A(x)^3 ).
RELATED SERIES.
Let G(x) be the g.f. of the Wedderburn-Etherington numbers, then
A( x - x^2 - x*G(x) ) = x, where G(x) = x + (1/2)*(G(x)^2 + G(x^2)) begins
G(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + 46*x^9 + 98*x^10 + 207*x^11 + 451*x^12 + 983*x^13 + ... + A001190(n)*x^n + ...
A(x)^2 = x^2 + 4*x^3 + 22*x^4 + 138*x^5 + 935*x^6 + 6662*x^7 + 49191*x^8 + 373020*x^9 + 2887711*x^10 + 22727256*x^11 + ...
A(x)^3 = x^3 + 6*x^4 + 39*x^5 + 269*x^6 + 1938*x^7 + 14418*x^8 + 109932*x^9 + 854568*x^10 + 6747672*x^11 + ...
SPECIFIC VALUES.
A(t) = 1/5 at t = 0.1094430388151747748055350980742058560407673560783455...
where 1/25 = A( t^2 + 2*t/25 + 2/125 ).
A(t) = 1/6 at t = 0.1053569291935061227625330002451062383852684202941979...
where 1/36 = A( t^2 + t/18 + 1/108 ).
A(1/10) = 0.1471263013840628871589336795118257882025452972700045...
where A(1/10)^2 = A( 1/10^2 + (2/10)*A(1/10)^2 + 2*A(1/10)^3 ).
A(1/11) = 0.1237258078822115859596611191115342221543387518134407...
A(1/12) = 0.1081759735424269717469930892718654709953905803313352...
-
{a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2 + 2*x*Ax^2 + 2*Ax^3) - Ax^2, #A) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
A378247
G.f. A(x) satisfies A(x)^2 = A( x^2 + 2*x*A(x)^2 + 2*A(x)^4 ).
Original entry on oeis.org
1, 1, 3, 10, 39, 161, 699, 3135, 14427, 67716, 322959, 1560585, 7624007, 37593476, 186856061, 935214523, 4709265692, 23841104525, 121275951719, 619558165489, 3177346503440, 16351749778167, 84419824808865, 437105510426235, 2269266695980449, 11810014285000263, 61602685079710638
Offset: 1
G.f.: A(x) = x + x^2 + 3*x^3 + 10*x^4 + 39*x^5 + 161*x^6 + 699*x^7 + 3135*x^8 + 14427*x^9 + 67716*x^10 + 322959*x^11 + 1560585*x^12 + ...
where A(x)^2 = A( x^2 + 2*x*A(x)^2 + 2*A(x)^4 ).
RELATED SERIES.
Let G(x) be the g.f. of the Wedderburn-Etherington numbers, then
A( x - x^2 - x*G(x^2) ) = x, where G(x) = x + (1/2)*(G(x)^2 + G(x^2)) begins
G(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + 46*x^9 + 98*x^10 + 207*x^11 + 451*x^12 + 983*x^13 + 2179*x^14 + ... + A001190(n)*x^n + ...
Let B(x) be the series reversion of g.f. A(x) so that B(A(x)) = x, then
B(x) = x - x^2 - x^3 - x^5 - x^7 - 2*x^9 - 3*x^11 - 6*x^13 - 11*x^15 - 23*x^17 - 46*x^19 - 98*x^21 - 207*x^23 + ...
where B(x) = x - x^2 - x*G(x^2).
SPECIFIC VALUES.
A(t) = 1/3 at t = 0.1804894059505127351310871071614416167035910065610113327...
where 1/9 = A( t^2 + 2*t/9 + 2/81 ).
A(t) = 1/4 at t = 0.1708289565101545485579649480920097855916395263217351536...
where 1/16 = A( t^2 + t/8 + 1/128 ).
A(t) = 1/5 at t = 0.1516661092515691718015998101146470241027491658579501286...
where 1/25 = A( t^2 + 2*t/25 + 2/625 ).
A(t) = 1/6 at t = 0.1341268789797555579297424694390747929782019601987848246...
where 1/36 = A( t^2 + t/18 + 1/648 ).
A(1/6) = 0.2368314953172156547771056118501694080205525703518284958...
A(1/7) = 0.1824082884402163049324182135107985537409785918465705698...
A(1/8) = 0.1515179821748020682616541846638756124979071552818869937...
A(1/9) = 0.1303577455916869424988611259176631850931169441135101392...
A(1/10) = 0.1146797533131163787803333792504789207692884367435306666...
-
{a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2 + 2*x*Ax^2 + 2*Ax^4) - Ax^2, #A) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
Showing 1-4 of 4 results.
Comments