A271959
G.f. A(x) satisfies: A(x)^2 = A( x^2 + 2*A(x)^3 ), with A(0)=0, A'(0)=1.
Original entry on oeis.org
1, 1, 3, 11, 46, 206, 968, 4706, 23475, 119473, 617911, 3238299, 17159235, 91778276, 494844531, 2686731634, 14676812392, 80608719674, 444853616294, 2465582096210, 13718412623437, 76596933043436, 429046752044241, 2410260414325754, 13576401507921773, 76660997896449976, 433862051647272420, 2460614616704514931, 13982516582761530427, 79601022639916142384
Offset: 1
G.f.: A(x) = x + x^2 + 3*x^3 + 11*x^4 + 46*x^5 + 206*x^6 + 968*x^7 + 4706*x^8 + 23475*x^9 + 119473*x^10 + 617911*x^11 + 3238299*x^12 +...
where A(x)^2 = A( x^2 + 2*A(x)^3 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 28*x^5 + 123*x^6 + 570*x^7 + 2745*x^8 + 13596*x^9 + 68818*x^10 + 354380*x^11 + 1850642*x^12 + 9777476*x^13 + 52166536*x^14 +...
A(x)^3 = x^3 + 3*x^4 + 12*x^5 + 52*x^6 + 240*x^7 + 1152*x^8 + 5694*x^9 + 28776*x^10 + 148008*x^11 + 772208*x^12 + 4076736*x^13 + 21737472*x^14 +...
Let B(x) be the series reversion of g.f. A(x), A(B(x)) = x, then
B(x) = x - x^2 - x^3 - x^4 - 2*x^5 - 3*x^6 - 6*x^7 - 11*x^8 - 23*x^9 - 46*x^10 - 98*x^11 - 207*x^12 - 451*x^13 - 983*x^14 +...+ -A001190(n)*x^(n+1) +...
such that B(x) = x - x*G(x), where G(x) = x + (1/2)*(G(x)^2 + G(x^2)).
SPECIFIC VALUES.
A(1/6) = 0.268639354433758631443638721883026384052966634356654...
where A(1/6)^2 = A( 1/36 + 2*A(1/6)^3 ).
A(1/7) = 0.185430467497916613031797200968643881842140126550450...
where A(1/7)^2 = A( 1/49 + 2*A(1/7)^3 ).
A(1/8) = 0.152603770337160474296825145654940422398214899394916...
where A(1/8)^2 = A( 1/64 + 2*A(1/8)^3 ).
A(1/10) = 0.11495842465953100301539082058016718103413837897733...
where A(1/10)^2 = A( 1/100 + 2*A(1/10)^3 ).
-
{a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, X^2 + 2*A^3)^(1/2) ); polcoeff(A,n)}
for(n=1,30,print1(a(n),", "))
A376224
G.f. A(x) satisfies A( (x + 3*A(x)^2)^3 ) = A(x)^3.
Original entry on oeis.org
1, 3, 18, 136, 1152, 10458, 99473, 978480, 9872181, 101598389, 1062382809, 11255336235, 120555453344, 1303305334704, 14202627395202, 155847144409224, 1720542786453765, 19096869133735155, 212977164179543266, 2385405242723601582, 26820428322385799784, 302611771988083401990
Offset: 1
G.f.: A(x) = x + 3*x^2 + 18*x^3 + 136*x^4 + 1152*x^5 + 10458*x^6 + 99473*x^7 + 978480*x^8 + 9872181*x^9 + 101598389*x^10 + ...
where A( (x + 3*A(x)^2)^3 ) = A(x)^3.
RELATED SERIES.
A(x)^3 = x^3 + 9*x^4 + 81*x^5 + 759*x^6 + 7362*x^7 + 73386*x^8 + 747567*x^9 + 7749720*x^10 + 81500094*x^11 + 867420469*x^12 + ...
( x^2*A(x) )^(1/3) = x + x^2 + 5*x^3 + 35*x^4 + 284*x^5 + 2508*x^6 + 23401*x^7 + 226950*x^8 + 2265015*x^9 + 23110418*x^10 + ...
Let B(x) be the series reversion of g.f. A(x), A(B(x)) = x, then
B(x) = x - 3*x^2 - x^4 - x^7 - 2*x^10 - 4*x^13 - 9*x^16 - 22*x^19 - 55*x^22 - 142*x^25 - 376*x^28 - ... + -A352702(n)*x^(3*n+4) + ...
where B(x) = x*(1 - x*G(x))^3 and B(x) = x - 3*x^2 - x^4*G(x^3), where G(x) is the g.f. of A352702 and begins:
G(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 22*x^5 + 55*x^6 + 142*x^7 + 376*x^8 + 1011*x^9 + 2758*x^10 + ...
-
{a(n) = my(A = x+x^2); for(m=1, n, A = truncate(A) + x^2*O(x^m); A = subst(A, x, (x + 3*A^2)^3 )^(1/3) ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A378247
G.f. A(x) satisfies A(x)^2 = A( x^2 + 2*x*A(x)^2 + 2*A(x)^4 ).
Original entry on oeis.org
1, 1, 3, 10, 39, 161, 699, 3135, 14427, 67716, 322959, 1560585, 7624007, 37593476, 186856061, 935214523, 4709265692, 23841104525, 121275951719, 619558165489, 3177346503440, 16351749778167, 84419824808865, 437105510426235, 2269266695980449, 11810014285000263, 61602685079710638
Offset: 1
G.f.: A(x) = x + x^2 + 3*x^3 + 10*x^4 + 39*x^5 + 161*x^6 + 699*x^7 + 3135*x^8 + 14427*x^9 + 67716*x^10 + 322959*x^11 + 1560585*x^12 + ...
where A(x)^2 = A( x^2 + 2*x*A(x)^2 + 2*A(x)^4 ).
RELATED SERIES.
Let G(x) be the g.f. of the Wedderburn-Etherington numbers, then
A( x - x^2 - x*G(x^2) ) = x, where G(x) = x + (1/2)*(G(x)^2 + G(x^2)) begins
G(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + 46*x^9 + 98*x^10 + 207*x^11 + 451*x^12 + 983*x^13 + 2179*x^14 + ... + A001190(n)*x^n + ...
Let B(x) be the series reversion of g.f. A(x) so that B(A(x)) = x, then
B(x) = x - x^2 - x^3 - x^5 - x^7 - 2*x^9 - 3*x^11 - 6*x^13 - 11*x^15 - 23*x^17 - 46*x^19 - 98*x^21 - 207*x^23 + ...
where B(x) = x - x^2 - x*G(x^2).
SPECIFIC VALUES.
A(t) = 1/3 at t = 0.1804894059505127351310871071614416167035910065610113327...
where 1/9 = A( t^2 + 2*t/9 + 2/81 ).
A(t) = 1/4 at t = 0.1708289565101545485579649480920097855916395263217351536...
where 1/16 = A( t^2 + t/8 + 1/128 ).
A(t) = 1/5 at t = 0.1516661092515691718015998101146470241027491658579501286...
where 1/25 = A( t^2 + 2*t/25 + 2/625 ).
A(t) = 1/6 at t = 0.1341268789797555579297424694390747929782019601987848246...
where 1/36 = A( t^2 + t/18 + 1/648 ).
A(1/6) = 0.2368314953172156547771056118501694080205525703518284958...
A(1/7) = 0.1824082884402163049324182135107985537409785918465705698...
A(1/8) = 0.1515179821748020682616541846638756124979071552818869937...
A(1/9) = 0.1303577455916869424988611259176631850931169441135101392...
A(1/10) = 0.1146797533131163787803333792504789207692884367435306666...
-
{a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2 + 2*x*Ax^2 + 2*Ax^4) - Ax^2, #A) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments